Study guides

☆☆

Q: How many solutions will a system of equations have if the graphs of the lines intersect?

Write your answer...

Submit

Still have questions?

Continue Learning about Other Math

A system of equations will have no solutions if the line they represent are parallel. Remember that the solution of a system of equations is physically represented by the intersection point of the two lines. If the lines don't intersect (parallel) then there can be no solution.

Graph both equations on the same graph. Where they intersect is the solution to the system of equations

Because linear lines can't intersect in two seperate places. They either intersect at one specific coordinate, or the lines are on top of each other and they intersect at every point.

If it is a linear system, then it could have either 1 solution, no solutions, or infinite solutions. To understand this, think of two lines (consider a plane which is just 2 dimensional - this represents 2 variables and 2 equations, but the idea can be extended to more dimensions).If the 2 lines intersect at a point, then that point represents a solution. If the lines are parallel, then they never intersect, and there is no solution. If the equations are such that they are just different ways of describing the same line, then they intersect at every point, so there are infinite solutions. If you have more than 2 lines then maybe some of them will intersect, but this is not a solution for the whole system. If all lines intersect at a single point, then that is the single solution for the whole system.If you have equations that describe something other than a straight line, then it's possible that they may intersect in more than one point.

A system of linear equations can only have: no solution, one solution, or infinitely many solutions.

Related questions

-- Graph each equation individually. -- Examine the graph to find points where the individual graphs intersect. -- The points where the individual graphs intersect are the solutions of the system of equations.

They are straight line graphs that work out the solutions of 2 equations or simultaneous equations

That's right. If a system of equations has a solution, then their graphs intersect, and the point where they intersect is the solution, because it's the point that satisfies each equation in the system. Straight-line graphs with the same slope are parallel lines, and they never intersect, which is another way of saying they have no solution.

The solution is the coordinates of the point where the graphs of the equations intersect.

Write each equations in popular form. ... Make the coefficients of one variable opposites. ... Add the equations ensuing from Step two to remove one variable. Solve for the last variable. Substitute the answer from Step four into one of the unique equations.

The system of equations can have zero solutions, one solution, two solutions, any finite number of solutions, or an infinite number of solutions. If it is a system of LINEAR equations, then the only possibilities are zero solutions, one solution, and an infinite number of solutions. With linear equations, think of each equation describing a straight line. The solution to the system of equations will be where these lines intersect (a point). If they do not intersect at all (or maybe two of the lines intersect, and the third one doesn't) then there is no solution. If the equations describe the same line, then there will be infinite solutions (every point on the line satisfies both equations). If the system of equations came from a real world problem (like solving for currents or voltages in different parts of a circuit) then there should be a solution, if the equations were chosen properly.

Functions (lines, parabolas, etc.) whose graphs never intersect each other.

A system of equations will have no solutions if the line they represent are parallel. Remember that the solution of a system of equations is physically represented by the intersection point of the two lines. If the lines don't intersect (parallel) then there can be no solution.

If a system of equations is inconsistent, there are no solutions.

If a system is inconsistent it cannot have any solutions.A system of equations is considered inconsistent when the lines are parallel which means they never intersect so there are no solutions.A system is considered consistent when they intersect at one point and have one solution (Also known as an independent system of equations).Dependent Systems are when the lines coincide (the same equation) so they have an infinite number of solutions.

One way is to look at the graphs of these equations. If they intersect, the point of intersection (x, y) is the only solution of the system. In this case we say that the system is consistent. If their graphs do not intersect, then the system has no solution. In this case we say that the system is inconsistent. If the graph of the equations is the same line, the system has infinitely simultaneous solutions. We can use several methods in order to solve the system algebraically. In the case where the equations of the system are dependent (the coefficients of the same variable are multiple of each other), the system has infinite number of solutions solution. For example, 2x + 3y = 6 4y + 6y = 12 These equations are dependent. Since they represent the same line, all points that satisfy either of the equations are solutions of the system. Try to solve this system of equations, 2x + 3y = 6 4x + 6y = 7 If you use addition or subtraction method, and you obtain a peculiar result such that 0 = 5, actually you have shown that the system has no solution (there is no point that satisfying both equations). When you use the substitution method and you obtain a result such that 5 = 5, this result indicates no solution for the system.

If the equations are linear, they may have no common solutions, one common solutions, or infinitely many solutions. Graphically, in the simplest case you have two straight lines; these can be parallel, intersect in a same point, or actually be the same line. If the equations are non-linear, they may have any amount of solutions. For example, two different intersecting ellipses may intersect in up to four points.

People also asked