2.576 sd
In a normal distribution, approximately 95% of the population falls within 2 standard deviations of the mean. This is known as the 95% rule or the empirical rule. The empirical rule states that within one standard deviation of the mean, about 68% of the population falls, and within two standard deviations, about 95% of the population falls.
The answer will depend on what the distribution is. Non-statisticians often assum that the variable that they are interested in follows the Standard Normal distribution. This assumption must be justified. If that is the case then the answer is 81.9%
.13
2.70% = 0.027
urban
In a normal distribution, approximately 68% of the population falls within one standard deviation of the mean, and about 95% falls within two standard deviations. Therefore, to find the percentage of the population between one standard deviation below the mean and two standard deviations above the mean, you would calculate 95% (within two standard deviations) minus 34% (the portion below one standard deviation), resulting in approximately 61% of the population.
95% is within 2 standard deviations of the mean.
95 percent of measurements are less than 2 standard deviations away from the mean, assuming a normal distribution.
15/1000
2.275 %
In a normal distribution, approximately 95% of the population falls within 2 standard deviations of the mean. This is known as the 95% rule or the empirical rule. The empirical rule states that within one standard deviation of the mean, about 68% of the population falls, and within two standard deviations, about 95% of the population falls.
It depends on the shape of the distribution. For standard normal distribution, a two tailed range would be from -1.15 sd to + 1.15 sd.
A normal distribution with a mean of 65 and a standard deviation of 2.5 would have 95% of the population being between 60 and 70, i.e. +/- two standard deviations.
It means that 95% of the values in the data set falls within 2 standard deviations of the mean value.
Approximately 2 standard deviations (1.96, actually) from the mean. That is important to know that if one has a sample of 1000 values, if one selects a threshold at +/- 2 standard deviations from the mean, then one expects to see about 25 values exceeding those thresholds (on each side of the mean)
Iraq
Above 1.96: 0.024998 = 2.5% below 1.96: 0.975002 = 97.5%