The answer will depend on what the distribution is. Non-statisticians often assum that the variable that they are interested in follows the Standard Normal distribution. This assumption must be justified.
If that is the case then the answer is 81.9%
In a normal distribution, approximately 95% of the population falls within 2 standard deviations of the mean. This is known as the 95% rule or the empirical rule. The empirical rule states that within one standard deviation of the mean, about 68% of the population falls, and within two standard deviations, about 95% of the population falls.
2.576 sd
false
A stock produced returns of 11 percent, -14 percent, and 3 percent over three of the past four years. The arithmetic average for the past four years is 6.5 percent. What is the standard deviation of the stock's returns for this four year period?
Confidence interval considers the entire data series to fix the band width with mean and standard deviation considers the present data where as prediction interval is for independent value and for future values.
A normal distribution with a mean of 65 and a standard deviation of 2.5 would have 95% of the population being between 60 and 70, i.e. +/- two standard deviations.
in a normal distribution, the mean plus or minus one standard deviation covers 68.2% of the data. If you use two standard deviations, then you will cover approx. 95.5%, and three will earn you 99.7% coverage
95% is within 2 standard deviations of the mean.
95 percent of measurements are less than 2 standard deviations away from the mean, assuming a normal distribution.
Percent variation is the standard deviation divided by the average
Percent deviation is a measure of how much a value deviates, or differs, from a standard or expected value. It is calculated by taking the absolute difference between the measured value and the standard value, dividing by the standard value, and then multiplying by 100 to express it as a percentage.
mrs.sung gave a test in her trigonometry class. the scores were normally distributed with a mean of 85 and a standard deviation of 3. what percent would you expect to score between 88 and 91?
if standard deviation is 4 minutes 95% probability is about 2 standard deviations (actually 1.96) so you would need to allow 30 + 8 = 38 minutes
67% as it's +/- one standard deviation from the mean
68 % is about one standard deviation - so there score would be between 64 and 80 (72 +/- 8)
In a normal distribution, approximately 95% of the population falls within 2 standard deviations of the mean. This is known as the 95% rule or the empirical rule. The empirical rule states that within one standard deviation of the mean, about 68% of the population falls, and within two standard deviations, about 95% of the population falls.
15/1000