answersLogoWhite

0

In a normal distribution, approximately 95% of the population falls within 2 standard deviations of the mean. This is known as the 95% rule or the empirical rule. The empirical rule states that within one standard deviation of the mean, about 68% of the population falls, and within two standard deviations, about 95% of the population falls.

User Avatar

ProfBot

6mo ago

What else can I help you with?

Related Questions

In a standard normal distribution 95 percent of the data is within plus standard deviations of the mean?

95% is within 2 standard deviations of the mean.


How many standard deviations are 95 percent of measurements away from the mean?

95 percent of measurements are less than 2 standard deviations away from the mean, assuming a normal distribution.


What Percent of population between 1 standard deviation below the mean and 2 standard deviations above mean?

In a normal distribution, approximately 68% of the population falls within one standard deviation of the mean, and about 95% falls within two standard deviations. Therefore, to find the percentage of the population between one standard deviation below the mean and two standard deviations above the mean, you would calculate 95% (within two standard deviations) minus 34% (the portion below one standard deviation), resulting in approximately 61% of the population.


What percent of the data in a normal distribution lies more than 2 standard deviations above the mean?

2.275 %


What does normality mean in health and social care?

All minor deviations occurring with two standard deviations under the Gaussian curve are considered normal. Deviations occurring outside of two standard deviations are considered abnormal.


How many standard deviations is needed to capture 75 percent of data?

It depends on the shape of the distribution. For standard normal distribution, a two tailed range would be from -1.15 sd to + 1.15 sd.


What percentage of scores falls between the mean and -2 to 2 standard deviations under the normal curve?

In a normal distribution, approximately 68% of scores fall within one standard deviation of the mean (between -1 and +1 standard deviations). About 95% of scores fall within two standard deviations (between -2 and +2 standard deviations). Therefore, the percentage of scores that falls specifically between the mean and -2 to 2 standard deviations is about 95% minus the 50% that is below the mean, resulting in approximately 45%.


According to the normal probability distribution 95 percent of the values of a normal random variable are contained w in plus or minus how many standard deviations from the mean Why is that important?

Approximately 2 standard deviations (1.96, actually) from the mean. That is important to know that if one has a sample of 1000 values, if one selects a threshold at +/- 2 standard deviations from the mean, then one expects to see about 25 values exceeding those thresholds (on each side of the mean)


What percentage of scores fall within -3 and plus 3 standard deviations around the mean in a normal distribution?

99.7% of scores fall within -3 and plus 3 standard deviations around the mean in a normal distribution.


In statistics what does the empirical rule states?

Nearly all the values in a sample from a normal population will lie within three standard deviations of the mean. Please see the link.


If average height for women is normally distributed with a mean of 65 inches and a standard deviation of 2.5 inches then approximately 95 percent of all women should be between what and what inches?

A normal distribution with a mean of 65 and a standard deviation of 2.5 would have 95% of the population being between 60 and 70, i.e. +/- two standard deviations.


The mean plus or minus the standard deviation for a normal distribution provides a probability range of what percent?

in a normal distribution, the mean plus or minus one standard deviation covers 68.2% of the data. If you use two standard deviations, then you will cover approx. 95.5%, and three will earn you 99.7% coverage