answersLogoWhite

0


Best Answer

Unfortunately, limitations of the browser used by Answers.com means that we cannot see most symbols. It is therefore impossible to give a proper answer to your question. Please resubmit your question spelling out the symbols as "plus", "minus", "equals", "squared", "cubed" etc.

As it appears, the question makes no sense at all!

User Avatar

Wiki User

11y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Is 1 2 6 closest to 0 1 1 1 2 2?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

Is 5 6 closest to 0 or 1?

Divide it out, 5/6 = 0.8333, so its closest to 1


What is 6 minus 1 times 0 plus 2 divided by 2?

one could be the answer depends on position of any parentheses. Example ((6-1)*(0+2))/2=5. But (6-1)*(0+2/2) =5 as well but (6-1)*0 +2/2 =1 as anything times 0 is zero. If the equation is 6-(1*0) +2/2 that equals 7 while (6-(1*0)+2)/2=4 etc


What are the first 1 million digets of pi?

3. 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7 5 1 0 5 8 2 0 9 7 4 9 4 4 5 9 2 3 0 7 8 1 6 4 0 6 2 8 6 2 0 8 9 9 8 6 2 8 0 3 4 8 2 5 3 4 2 1 1 7 0 6 7 9 8 2 1 4 8 0 8 6 5 1 3 2 8 2 3 0 6 6 4 7 0 9 3 8 4 4 6 0 9 5 5 0 5 8 2 2 3 1 7 2 5 3 5 9 4 0 8 1 2 8 4 8 1 1 1 7 4 5 0 2 8 4 1 0 2 7 0 1 9 3 8 5 2 1 1 0 5 5 5 9 6 4 4 6 2 2 9 4 8 9 5 4 9 3 0 3 8 1 9 6 4 4 2 8 8 1 0 9 7 5 6 6 5 9 3 3 4 4 6 1 2 8 4 7 5 6 4 8 2 3 3 7 8 6 7 8 3 1 6 5 2 7 1 2 0 1 9 0 9 1 4 5 6 4 8 5 6 6 9 2 3 4 6 0 3 4 8 6 1 0 4 5 4 3 2 6 6 4 8 2 1 3 3 9 3 6 0 7 2 6 0 2 4 9 1 4 1 2 7 3 7 2 4 5 8 7 0 0 6 6 0 6 3 1 5 5 8 8 1 7 4 8 8 1 5 2 0 9 2 0 9 6 2 8 2 9 2 5 4 0 9 1 7 1 5 3 6 4 3 6 7 8 9 2 5 9 0 3 6 0 0 1 1 3 3 0 5 3 0 5 4 8 8 2 0 4 6 6 5 2 1 3 8 4 1 4 6 9 5 1 9 4 1 5 1 1 6 0 9 4 3 3 0 5 7 2 7 0 3 6 5 7 5 9 5 9 1 9 5 3 0 9 2 1 8 6 1 1 7 3 8 1 9 3 2 6 1 1 7 9 3 1 0 5 1 1 8 5 4 8 0 7 4 4 6 2 3 7 9 9 6 2 7 4 9 5 6 7 3 5 1 8 8 5 7 5 2 7 2 4 8 9 1 2 2 7 9 3 8 1 8 3 0 1 1 9 4 9 1 2 9 8 3 3 6 7 3 3 6 2 4 4 0 6 5 6 6 4 3 0 8 6 0 2 1 3 9 4 9 4 6 3 9 5 2 2 4 7 3 7 1 9 0 7 0 2 1 7 9 8 6 0 9 4 3 7 0 2 7 7 0 5 3 9 2 1 7 1 7 6 2 9 3 1 7 6 7 5 2 3 8 4 6 7 4 8 1 8 4 6 7 6 6 9 4 0 5 1 3 2 0 0 0 5 6 8 1 2 7 1 4 5 2 6 3 5 6 0 8 2 7 7 8 5 7 7 1 3 4 2 7 5 7 7 8 9 6 0 9 1 7 3 6 3 7 1 7 8 7 2 1 4 6 8 4 4 0 9 0 1 2 2 4 9 5 3 4 3 0 1 4 6 5 4 9 5 8 5 3 7 1 0 5 0 7 9 2 2 7 9 6 8 9 2 5 8 9 2 3 5 4 2 0 1 9 9 5 6 1 1 2 1 2 9 0 2 1 9 6 0 8 6 4 0 3 4 4 1 8 1 5 9 8 1 3 6 2 9 7 7 4 7 7 1 3 0 9 9 6 0 5 1 8 7 0 7 2 1 1 3 4 9 9 9 9 9 9 8 3 7 2 9 7 8 0 4 9 9 5 1 0 5 9 7 3 1 7 3 2 8 1 6 0 9 6 3 1 8 5 9 5 0 2 4 4 5 9 4 5 5 3 4 6 9 0 8 3 0 2 6 4 2 5 2 2 3 0 8 2 5 3 3 4 4 6 8 5 0 3 5 2 6 1 9 3 1 1 8 8 1 7 1 0 1 0 0 0 3 1 3 7 8 3 8 7 5 2 8 8 6 5 8 7 5 3 3 2 0 8 3 8 1 4 2 0 6 1 7 1 7 7 6 6 9 1 4 7 3 0 3 5 9 8 2 5 3 4 9 0 4 2 8 7 5 5 4 6 8 7 3 1 1 5 9 5 6 2 8 6 3 8 8 2 3 5 3 7 8 7 5 9 3 7 5 1 9 5 7 7 8 1 8 5 7 7 8 0 5 3 2 1 7 1 2 2 6 8 0 6 6 1 3 0 0 1 9 2 7 8 7 6 6 1 1 1 9 5 9 0 9 2 1 6 4 2 0 1 9 8 9


What are the 4 digit combinations of the numbers 0 through 9?

There are 10!/(4!(10-4)!) = 210 such combinations assuming no repeats are allowed: {0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 2, 5}, {0, 1, 2, 6}, {0, 1, 2, 7}, {0, 1, 2, 8}, {0, 1, 2, 9}, {0, 1, 3, 4}, {0, 1, 3, 5}, {0, 1, 3, 6}, {0, 1, 3, 7}, {0, 1, 3, 8}, {0, 1, 3, 9}, {0, 1, 4, 5}, {0, 1, 4, 6}, {0, 1, 4, 7}, {0, 1, 4, 8}, {0, 1, 4, 9}, {0, 1, 5, 6}, {0, 1, 5, 7}, {0, 1, 5, 8}, {0, 1, 5, 9}, {0, 1, 6, 7}, {0, 1, 6, 8}, {0, 1, 6, 9}, {0, 1, 7, 8}, {0, 1, 7, 9}, {0, 1, 8, 9}, {0, 2, 3, 4}, {0, 2, 3, 5}, {0, 2, 3, 6}, {0, 2, 3, 7}, {0, 2, 3, 8}, {0, 2, 3, 9}, {0, 2, 4, 5}, {0, 2, 4, 6}, {0, 2, 4, 7}, {0, 2, 4, 8}, {0, 2, 4, 9}, {0, 2, 5, 6}, {0, 2, 5, 7}, {0, 2, 5, 8}, {0, 2, 5, 9}, {0, 2, 6, 7}, {0, 2, 6, 8}, {0, 2, 6, 9}, {0, 2, 7, 8}, {0, 2, 7, 9}, {0, 2, 8, 9}, {0, 3, 4, 5}, {0, 3, 4, 6}, {0, 3, 4, 7}, {0, 3, 4, 8}, {0, 3, 4, 9}, {0, 3, 5, 6}, {0, 3, 5, 7}, {0, 3, 5, 8}, {0, 3, 5, 9}, {0, 3, 6, 7}, {0, 3, 6, 8}, {0, 3, 6, 9}, {0, 3, 7, 8}, {0, 3, 7, 9}, {0, 3, 8, 9}, {0, 4, 5, 6}, {0, 4, 5, 7}, {0, 4, 5, 8}, {0, 4, 5, 9}, {0, 4, 6, 7}, {0, 4, 6, 8}, {0, 4, 6, 9}, {0, 4, 7, 8}, {0, 4, 7, 9}, {0, 4, 8, 9}, {0, 5, 6, 7}, {0, 5, 6, 8}, {0, 5, 6, 9}, {0, 5, 7, 8}, {0, 5, 7, 9}, {0, 5, 8, 9}, {0, 6, 7, 8}, {0, 6, 7, 9}, {0, 6, 8, 9}, {0, 7, 8, 9}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 3, 7}, {1, 2, 3, 8}, {1, 2, 3, 9}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 4, 7}, {1, 2, 4, 8}, {1, 2, 4, 9}, {1, 2, 5, 6}, {1, 2, 5, 7}, {1, 2, 5, 8}, {1, 2, 5, 9}, {1,2, 6, 7}, {1, 2, 6, 8}, {1, 2, 6, 9}, {1, 2, 7, 8}, {1, 2, 7, 9}, {1, 2, 8, 9}, {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 4, 7}, {1, 3, 4, 8}, {1, 3, 4, 9}, {1, 3, 5, 6}, {1, 3, 5, 7}, {1, 3, 5, 8}, {1, 3, 5, 9}, {1, 3, 6, 7}, {1, 3, 6, 8}, {1, 3, 6, 9}, {1, 3, 7, 8}, {1, 3, 7, 9}, {1, 3, 8, 9}, {1, 4, 5, 6}, {1, 4, 5, 7}, {1, 4, 5, 8}, {1, 4, 5, 9}, {1, 4, 6, 7}, {1, 4, 6, 8}, {1, 4, 6, 9}, {1, 4, 7, 8}, {1, 4, 7, 9}, {1, 4, 8, 9}, {1, 5, 6, 7}, {1, 5, 6, 8}, {1, 5, 6, 9}, {1, 5, 7, 8}, {1, 5, 7, 9}, {1, 5, 8, 9}, {1, 6, 7, 8}, {1, 6, 7, 9}, {1, 6, 8, 9}, {1, 7, 8, 9}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 4, 7}, {2, 3, 4, 8}, {2, 3, 4, 9}, {2, 3, 5, 6}, {2, 3, 5, 7}, {2, 3, 5, 8}, {2, 3, 5, 9}, {2, 3, 6, 7}, {2, 3, 6, 8}, {2, 3, 6, 9}, {2, 3, 7, 8}, {2, 3, 7, 9}, {2, 3, 8, 9}, {2, 4, 5, 6}, {2, 4, 5, 7}, {2, 4, 5, 8}, {2, 4, 5, 9}, {2, 4, 6, 7}, {2, 4, 6, 8}, {2, 4, 6, 9}, {2, 4, 7, 8}, {2, 4, 7, 9}, {2, 4, 8, 9}, {2, 5, 6, 7}, {2, 5, 6, 8}, {2, 5, 6, 9}, {2, 5, 7, 8}, {2, 5, 7, 9}, {2, 5, 8, 9}, {2, 6, 7, 8}, {2, 6, 7, 9}, {2, 6, 8, 9}, {2, 7, 8, 9}, {3, 4, 5, 6}, {3, 4, 5, 7}, {3, 4, 5, 8}, {3, 4, 5, 9}, {3, 4, 6, 7}, {3, 4, 6, 8}, {3, 4, 6, 9}, {3, 4, 7, 8}, {3, 4, 7, 9}, {3, 4, 8, 9}, {3, 5, 6, 7}, {3, 5, 6, 8}, {3, 5, 6, 9}, {3, 5, 7, 8}, {3, 5, 7, 9}, {3, 5, 8, 9}, {3, 6, 7, 8}, {3, 6, 7, 9}, {3, 6, 8, 9}, {3, 7, 8, 9}, {4, 5, 6, 7}, {4, 5, 6, 8}, {4, 5, 6, 9}, {4, 5, 7, 8}, {4, 5, 7, 9}, {4, 5, 8, 9}, {4, 6, 7, 8}, {4, 6, 7, 9}, {4, 6, 8, 9}, {4, 7, 8, 9}, {5, 6, 7, 8}, {5, 6, 7, 9}, {5, 6, 8, 9}, {5, 7, 8, 9}, {6, 7, 8, 9} If repeats are allowed, the number increases to 715 combinations - I'll leave it as an exercise for the reader to list the extra 505 combinations.


How many different combinations of quarters dimes and nickels make up 65 cents?

14: Quarters Dimes Nickels 0 0 13 0 1 11 0 2 9 0 3 7 0 4 5 0 5 3 0 6 1 1 0 8 1 1 6 1 2 4 1 3 2 1 4 0 2 0 3 2 1 1

Related questions

Is 5 6 closest to 0 or 1?

Divide it out, 5/6 = 0.8333, so its closest to 1


Is nine over 6 the fraction closest to 0 a half or 1?

9 over 6 is 9 divided by 6 which equals 1.5 or 1 1/2 (over 1)


What is 6 minus 1 times 0 plus 2 divided by 2?

one could be the answer depends on position of any parentheses. Example ((6-1)*(0+2))/2=5. But (6-1)*(0+2/2) =5 as well but (6-1)*0 +2/2 =1 as anything times 0 is zero. If the equation is 6-(1*0) +2/2 that equals 7 while (6-(1*0)+2)/2=4 etc


What is the range for 0 0 0 0 0 0 1 2 2 2 2 4 6?

0 and 6


What are two integers closest to the square root of 41?

They are 6 and 7 with 6 being the closest


Can someone translate this the sum of a number and ten is the difference of -6 and -6 increased by the sum of -1 and -1?

Do this in reverse. The sum of -1 and -1 is -1+-1=-2 The difference of -6 and -6 is -6-(-6)=-6+6=0 0 increased by -2 is 0+-2=-2 The sum of 10 and -2 is 10+-2=8 Translation: 8


What is the range of 0 1 2 3 4 5 6?

The range of {0, 1, 2, 3, 4, 5, 6} is 6 - 0 = 6.


How much is 6 - 1 x 0 2 divided by 2?

6 - 1 x 0 = 6 2 divided by 2 = 1 You have not put an operation in the middle


What are the first 1 million digets of pi?

3. 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7 5 1 0 5 8 2 0 9 7 4 9 4 4 5 9 2 3 0 7 8 1 6 4 0 6 2 8 6 2 0 8 9 9 8 6 2 8 0 3 4 8 2 5 3 4 2 1 1 7 0 6 7 9 8 2 1 4 8 0 8 6 5 1 3 2 8 2 3 0 6 6 4 7 0 9 3 8 4 4 6 0 9 5 5 0 5 8 2 2 3 1 7 2 5 3 5 9 4 0 8 1 2 8 4 8 1 1 1 7 4 5 0 2 8 4 1 0 2 7 0 1 9 3 8 5 2 1 1 0 5 5 5 9 6 4 4 6 2 2 9 4 8 9 5 4 9 3 0 3 8 1 9 6 4 4 2 8 8 1 0 9 7 5 6 6 5 9 3 3 4 4 6 1 2 8 4 7 5 6 4 8 2 3 3 7 8 6 7 8 3 1 6 5 2 7 1 2 0 1 9 0 9 1 4 5 6 4 8 5 6 6 9 2 3 4 6 0 3 4 8 6 1 0 4 5 4 3 2 6 6 4 8 2 1 3 3 9 3 6 0 7 2 6 0 2 4 9 1 4 1 2 7 3 7 2 4 5 8 7 0 0 6 6 0 6 3 1 5 5 8 8 1 7 4 8 8 1 5 2 0 9 2 0 9 6 2 8 2 9 2 5 4 0 9 1 7 1 5 3 6 4 3 6 7 8 9 2 5 9 0 3 6 0 0 1 1 3 3 0 5 3 0 5 4 8 8 2 0 4 6 6 5 2 1 3 8 4 1 4 6 9 5 1 9 4 1 5 1 1 6 0 9 4 3 3 0 5 7 2 7 0 3 6 5 7 5 9 5 9 1 9 5 3 0 9 2 1 8 6 1 1 7 3 8 1 9 3 2 6 1 1 7 9 3 1 0 5 1 1 8 5 4 8 0 7 4 4 6 2 3 7 9 9 6 2 7 4 9 5 6 7 3 5 1 8 8 5 7 5 2 7 2 4 8 9 1 2 2 7 9 3 8 1 8 3 0 1 1 9 4 9 1 2 9 8 3 3 6 7 3 3 6 2 4 4 0 6 5 6 6 4 3 0 8 6 0 2 1 3 9 4 9 4 6 3 9 5 2 2 4 7 3 7 1 9 0 7 0 2 1 7 9 8 6 0 9 4 3 7 0 2 7 7 0 5 3 9 2 1 7 1 7 6 2 9 3 1 7 6 7 5 2 3 8 4 6 7 4 8 1 8 4 6 7 6 6 9 4 0 5 1 3 2 0 0 0 5 6 8 1 2 7 1 4 5 2 6 3 5 6 0 8 2 7 7 8 5 7 7 1 3 4 2 7 5 7 7 8 9 6 0 9 1 7 3 6 3 7 1 7 8 7 2 1 4 6 8 4 4 0 9 0 1 2 2 4 9 5 3 4 3 0 1 4 6 5 4 9 5 8 5 3 7 1 0 5 0 7 9 2 2 7 9 6 8 9 2 5 8 9 2 3 5 4 2 0 1 9 9 5 6 1 1 2 1 2 9 0 2 1 9 6 0 8 6 4 0 3 4 4 1 8 1 5 9 8 1 3 6 2 9 7 7 4 7 7 1 3 0 9 9 6 0 5 1 8 7 0 7 2 1 1 3 4 9 9 9 9 9 9 8 3 7 2 9 7 8 0 4 9 9 5 1 0 5 9 7 3 1 7 3 2 8 1 6 0 9 6 3 1 8 5 9 5 0 2 4 4 5 9 4 5 5 3 4 6 9 0 8 3 0 2 6 4 2 5 2 2 3 0 8 2 5 3 3 4 4 6 8 5 0 3 5 2 6 1 9 3 1 1 8 8 1 7 1 0 1 0 0 0 3 1 3 7 8 3 8 7 5 2 8 8 6 5 8 7 5 3 3 2 0 8 3 8 1 4 2 0 6 1 7 1 7 7 6 6 9 1 4 7 3 0 3 5 9 8 2 5 3 4 9 0 4 2 8 7 5 5 4 6 8 7 3 1 1 5 9 5 6 2 8 6 3 8 8 2 3 5 3 7 8 7 5 9 3 7 5 1 9 5 7 7 8 1 8 5 7 7 8 0 5 3 2 1 7 1 2 2 6 8 0 6 6 1 3 0 0 1 9 2 7 8 7 6 6 1 1 1 9 5 9 0 9 2 1 6 4 2 0 1 9 8 9


What are the change combinations to make thirty one cents?

I'm going to list them all in sets of (Q, D, N, P), where Q = quarters, D = dimes, N = nickels, and P = pennies. (1, 0, 1, 1) (1, 0, 0, 6) (0, 3, 0, 1) (0, 2, 2, 1) (0, 2, 1, 6) (0, 2, 0, 11) (0, 1, 4, 1) (0, 1, 3, 6) (0, 1, 2, 11) (0, 1, 1, 16) (0, 1, 0, 21) (0, 0, 6, 1) (0, 0, 5, 6) (0, 0, 4, 11) (0, 0, 3, 16) (0, 0, 2, 21) (0, 0, 1, 26) (0, 0, 0, 31) Thus, there are 18 total combinations.


What is 6 minus 1 times 0 plus 2 divided by 2 with out parenthises?

6 - 1 * 0 + 2 / 2 = 7


What are the 4 digit combinations of the numbers 0 through 9?

There are 10!/(4!(10-4)!) = 210 such combinations assuming no repeats are allowed: {0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 2, 5}, {0, 1, 2, 6}, {0, 1, 2, 7}, {0, 1, 2, 8}, {0, 1, 2, 9}, {0, 1, 3, 4}, {0, 1, 3, 5}, {0, 1, 3, 6}, {0, 1, 3, 7}, {0, 1, 3, 8}, {0, 1, 3, 9}, {0, 1, 4, 5}, {0, 1, 4, 6}, {0, 1, 4, 7}, {0, 1, 4, 8}, {0, 1, 4, 9}, {0, 1, 5, 6}, {0, 1, 5, 7}, {0, 1, 5, 8}, {0, 1, 5, 9}, {0, 1, 6, 7}, {0, 1, 6, 8}, {0, 1, 6, 9}, {0, 1, 7, 8}, {0, 1, 7, 9}, {0, 1, 8, 9}, {0, 2, 3, 4}, {0, 2, 3, 5}, {0, 2, 3, 6}, {0, 2, 3, 7}, {0, 2, 3, 8}, {0, 2, 3, 9}, {0, 2, 4, 5}, {0, 2, 4, 6}, {0, 2, 4, 7}, {0, 2, 4, 8}, {0, 2, 4, 9}, {0, 2, 5, 6}, {0, 2, 5, 7}, {0, 2, 5, 8}, {0, 2, 5, 9}, {0, 2, 6, 7}, {0, 2, 6, 8}, {0, 2, 6, 9}, {0, 2, 7, 8}, {0, 2, 7, 9}, {0, 2, 8, 9}, {0, 3, 4, 5}, {0, 3, 4, 6}, {0, 3, 4, 7}, {0, 3, 4, 8}, {0, 3, 4, 9}, {0, 3, 5, 6}, {0, 3, 5, 7}, {0, 3, 5, 8}, {0, 3, 5, 9}, {0, 3, 6, 7}, {0, 3, 6, 8}, {0, 3, 6, 9}, {0, 3, 7, 8}, {0, 3, 7, 9}, {0, 3, 8, 9}, {0, 4, 5, 6}, {0, 4, 5, 7}, {0, 4, 5, 8}, {0, 4, 5, 9}, {0, 4, 6, 7}, {0, 4, 6, 8}, {0, 4, 6, 9}, {0, 4, 7, 8}, {0, 4, 7, 9}, {0, 4, 8, 9}, {0, 5, 6, 7}, {0, 5, 6, 8}, {0, 5, 6, 9}, {0, 5, 7, 8}, {0, 5, 7, 9}, {0, 5, 8, 9}, {0, 6, 7, 8}, {0, 6, 7, 9}, {0, 6, 8, 9}, {0, 7, 8, 9}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 3, 7}, {1, 2, 3, 8}, {1, 2, 3, 9}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 4, 7}, {1, 2, 4, 8}, {1, 2, 4, 9}, {1, 2, 5, 6}, {1, 2, 5, 7}, {1, 2, 5, 8}, {1, 2, 5, 9}, {1,2, 6, 7}, {1, 2, 6, 8}, {1, 2, 6, 9}, {1, 2, 7, 8}, {1, 2, 7, 9}, {1, 2, 8, 9}, {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 4, 7}, {1, 3, 4, 8}, {1, 3, 4, 9}, {1, 3, 5, 6}, {1, 3, 5, 7}, {1, 3, 5, 8}, {1, 3, 5, 9}, {1, 3, 6, 7}, {1, 3, 6, 8}, {1, 3, 6, 9}, {1, 3, 7, 8}, {1, 3, 7, 9}, {1, 3, 8, 9}, {1, 4, 5, 6}, {1, 4, 5, 7}, {1, 4, 5, 8}, {1, 4, 5, 9}, {1, 4, 6, 7}, {1, 4, 6, 8}, {1, 4, 6, 9}, {1, 4, 7, 8}, {1, 4, 7, 9}, {1, 4, 8, 9}, {1, 5, 6, 7}, {1, 5, 6, 8}, {1, 5, 6, 9}, {1, 5, 7, 8}, {1, 5, 7, 9}, {1, 5, 8, 9}, {1, 6, 7, 8}, {1, 6, 7, 9}, {1, 6, 8, 9}, {1, 7, 8, 9}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 4, 7}, {2, 3, 4, 8}, {2, 3, 4, 9}, {2, 3, 5, 6}, {2, 3, 5, 7}, {2, 3, 5, 8}, {2, 3, 5, 9}, {2, 3, 6, 7}, {2, 3, 6, 8}, {2, 3, 6, 9}, {2, 3, 7, 8}, {2, 3, 7, 9}, {2, 3, 8, 9}, {2, 4, 5, 6}, {2, 4, 5, 7}, {2, 4, 5, 8}, {2, 4, 5, 9}, {2, 4, 6, 7}, {2, 4, 6, 8}, {2, 4, 6, 9}, {2, 4, 7, 8}, {2, 4, 7, 9}, {2, 4, 8, 9}, {2, 5, 6, 7}, {2, 5, 6, 8}, {2, 5, 6, 9}, {2, 5, 7, 8}, {2, 5, 7, 9}, {2, 5, 8, 9}, {2, 6, 7, 8}, {2, 6, 7, 9}, {2, 6, 8, 9}, {2, 7, 8, 9}, {3, 4, 5, 6}, {3, 4, 5, 7}, {3, 4, 5, 8}, {3, 4, 5, 9}, {3, 4, 6, 7}, {3, 4, 6, 8}, {3, 4, 6, 9}, {3, 4, 7, 8}, {3, 4, 7, 9}, {3, 4, 8, 9}, {3, 5, 6, 7}, {3, 5, 6, 8}, {3, 5, 6, 9}, {3, 5, 7, 8}, {3, 5, 7, 9}, {3, 5, 8, 9}, {3, 6, 7, 8}, {3, 6, 7, 9}, {3, 6, 8, 9}, {3, 7, 8, 9}, {4, 5, 6, 7}, {4, 5, 6, 8}, {4, 5, 6, 9}, {4, 5, 7, 8}, {4, 5, 7, 9}, {4, 5, 8, 9}, {4, 6, 7, 8}, {4, 6, 7, 9}, {4, 6, 8, 9}, {4, 7, 8, 9}, {5, 6, 7, 8}, {5, 6, 7, 9}, {5, 6, 8, 9}, {5, 7, 8, 9}, {6, 7, 8, 9} If repeats are allowed, the number increases to 715 combinations - I'll leave it as an exercise for the reader to list the extra 505 combinations.