There is no law of closure. Closure is a property that some sets have with respect to a binary operation. For example, consider the set of even integers and the operation of addition. If you take any two members of the set (that is any two even integers), then their sum is also an even integer. This implies that the set of even integers is closed with respect to addition. But the set of odd integers is not closed with respect to addition since the sum of two odd integers is not odd. Neither set is closed with respect to division.
The numbers are not closed under addition because whole numbers, even integers, and natural numbers are closed.
That is correct, the set is not closed.
To be closed under an operation, when that operation is applied to two member of a set then the result must also be a member of the set. Thus the sets ℂ (Complex numbers), ℝ (Real Numbers), ℚ (Rational Numbers) and ℤ (integers) are closed under subtraction. ℤ+ (the positive integers), ℤ- (the negative integers) and ℕ (the natural numbers) are not closed under subtraction as subtraction can lead to a result which is not a member of the set.
No. For a set to be closed with respect to an operation, the result of applying the operation to any elements of the set also must be in the set. The set of negative numbers is not closed under multiplication because, for example (-1)*(-2)=2. In that example, we multiplied two numbers that were in the set (negative numbers) and the product was not in the set (it is a positive number). On the other hand, the set of all negative numbers is closed under the operation of addition because the sum of any two negative numbers is a negatoive number.
addition
If you mean the set of non-negative integers ("whole numbers" is a bit ambiguous in this sense), it is closed under addition and multiplication. If you mean "integers", the set is closed under addition, subtraction, multiplication.
You don't say that "an integer is closed". It is the SET of integers which is closed UNDER A SPECIFIC OPERATION. For example, the SET of integers is closed under the operations of addition and multiplication. That means that an addition of two members of the set (two integers in this case) will again give you a member of the set (an integer in this case).
negetive integers are not closed under addition but positive integers are.
-3 is a negative integer. The absolute value of -3 is +3 which is not a negative integer. So the set is not closed.
There is no law of closure. Closure is a property that some sets have with respect to a binary operation. For example, consider the set of even integers and the operation of addition. If you take any two members of the set (that is any two even integers), then their sum is also an even integer. This implies that the set of even integers is closed with respect to addition. But the set of odd integers is not closed with respect to addition since the sum of two odd integers is not odd. Neither set is closed with respect to division.
The numbers are not closed under addition because whole numbers, even integers, and natural numbers are closed.
1 No. 2 No. 3 Yes.
yes
That is correct, the set is not closed.
No.
No. Integers are not closed under division because they consist of negative and positive whole numbers. NO FRACTIONS!No.For a set to be closed under an operation, the result of the operation on any members of the set must be a member of the set.When the integer one (1) is divided by the integer four (4) the result is not an integer (1/4 = 0.25) and so not member of the set; thus integers are not closed under division.