The formula to find the sum of a geometric sequence is adding a + ar + ar2 + ar3 + ar4. The sum, to n terms, is given byS(n) = a*(1 - r^n)/(1 - r) or, equivalently, a*(r^n - 1)/(r - 1)
It is an arithmetic sequence. To differentiate arithmetic from geometric sequences, take any three numbers within the sequence. If the middle number is the average of the two on either side then it is an arithmetic sequence. If the middle number squared is the product of the two on either side then it is a geometric sequence. The sequence 0, 1, 1, 2, 3, 5, 8 and so on is the Fibonacci series, which is an arithmetic sequence, where the next number in the series is the sum of the previous two numbers. Thus F(n) = F(n-1) + F(n-2). Note that the Fibonacci sequence always begins with the two numbers 0 and 1, never 1 and 1.
It is 4374
Un = 4*3n-1 S9 = 39364
a sequence of shifted geometric numbers
The geometric series is, itself, a sum of a geometric progression. The sum of an infinite geometric sequence exists if the common ratio has an absolute value which is less than 1, and not if it is 1 or greater.
an arithmetic sequeunce does not have the sum to infinty, and a geometric sequence has.
No, but it can be expressed as the sum of two geometric sequences. F_n = a^n + b^n a = (1+sqrt{5})/2 b = (1-sqrt{5})/2
what is the recursive formula for this geometric sequence?
The formula to find the sum of a geometric sequence is adding a + ar + ar2 + ar3 + ar4. The sum, to n terms, is given byS(n) = a*(1 - r^n)/(1 - r) or, equivalently, a*(r^n - 1)/(r - 1)
It is an arithmetic sequence. To differentiate arithmetic from geometric sequences, take any three numbers within the sequence. If the middle number is the average of the two on either side then it is an arithmetic sequence. If the middle number squared is the product of the two on either side then it is a geometric sequence. The sequence 0, 1, 1, 2, 3, 5, 8 and so on is the Fibonacci series, which is an arithmetic sequence, where the next number in the series is the sum of the previous two numbers. Thus F(n) = F(n-1) + F(n-2). Note that the Fibonacci sequence always begins with the two numbers 0 and 1, never 1 and 1.
The sum of a geometric sequence is a(1-rn)/(1-r) In this case, a = 8, r = -2 and n=15 So the sum is 8(1-(-2)15)/(1+2) =8(1+32768)/3 =87,384 So the sum of the first 15 terms of the sequence 8, -16, 32, -64.... is 87,384.
Yes, that's what a geometric sequence is about.
It is 4374
Un = 4*3n-1 S9 = 39364
a sequence of shifted geometric numbers
Not sure about this question. But, a geometric sequence is a sequence of numbers such that the ratio of any two consecutive numbers is a constant, known as the "common ratio". A geometric sequence consists of a set of numbers of the form a, ar, ar2, ar3, ... arn, ... where r is the common ratio.