No.
A descending geometric sequence is a sequence in which the ratio between successive terms is a positive constant which is less than 1.
No.
A geometric sequence is : a•r^n which is ascending if a is greater than 0 and r is greater than 1.
The sequence 216 12 23 is neither arithmetic nor geometric.
No.
Yes, that's what a geometric sequence is about.
A geometric sequence is : a•r^n while a quadratic sequence is a• n^2 + b•n + c So the answer is no, unless we are talking about an infinite sequence of zeros which strictly speaking is both a geometric and a quadratic sequence.
antonette taño invented geometric sequence since 1990's
A descending geometric sequence is a sequence in which the ratio between successive terms is a positive constant which is less than 1.
what is the recursive formula for this geometric sequence?
It is called arithmetico-geometric sequence. I have added a link with some nice information about them.
No.
A geometric sequence is : a•r^n which is ascending if a is greater than 0 and r is greater than 1.
The sequence 216 12 23 is neither arithmetic nor geometric.
A single number does not constitute a sequence.
The sequence is neither arithmetic nor geometric.