If the inequality is strict ("less than" or "greater than") then a point on the line is not part of the solution. This is indicated by drawing a dashed line.
If the inequality is not strict ("less than or equal to" or "greater than or equal to") then a point on the line is part of the solution. This is indicated by drawing a solid line.
The line must be solid if the inequality is strict (less than or greater than). It must be a dashed line if otherwise (less than or equal to, greater than or equal to).
They are the same line.
Pick a test point, (the origin is the most convenient unless the line of the inequality falls on it), and plug it into the same linear inequality. If the test point makes the inequality true, then shade that side of the line. If the test point makes the inequality false, then shade the opposite side of the line.
One variable inequality- graph the point on the number line then choose a point on the point, to the left and to the right to see what gets shaded. Two variable inequality- graph the line on grid paper then choose a point on the line, to the left and to the right to see what gets shaded.
lol
Any compound inequality, in one variable, can be graphed on the number line.
If the line is undefined in a graphed inequality, it typically represents a vertical line, which corresponds to a vertical inequality such as ( x = a ). In this case, the inequality can be written as ( x < a ) or ( x > a ). The graph will shade to the left or right of the line, indicating the region that satisfies the inequality. Since the line itself is not included in the inequality, it is often represented with a dashed line.
Yes, graphed linear inequalities should be shaded to represent the solution set. The shading indicates all the points that satisfy the inequality. For example, if the inequality is (y > mx + b), the area above the line is shaded. If the inequality includes "less than or equal to" or "greater than or equal to," the line is typically solid; otherwise, it is dashed.
The solution to an inequality generally is a region with one more dimension. If the inequality/equation is of the form x < a or x = a then the solution to the inequality is the 1 dimensional line segment while the solution to the equality is a point which has no dimensions. If the inequality/equation is in 2 dimensions, the solution to the inequality is an area whereas the solution to the equality is a 1-d line or curve. And so on, in higher dimensional spaces.
To determine the inequality graphed on a number line, you would need to identify the points marked on the line and the direction of any arrows or shading. If the line is shaded to the left of a point (for example, -2) with an open circle, it represents the inequality ( x < -2 ). If it’s shaded to the right with a closed circle, it would indicate ( x \geq -2 ). Please provide specific details about the graph for a more precise answer.
To find the solution of two equations graphed on a coordinate plane, look for the point where the two lines intersect. This point represents the values of the variables that satisfy both equations simultaneously. The coordinates of this intersection point are the solution to the system of equations. If the lines are parallel, there is no solution; if they are the same line, there are infinitely many solutions.
It can be a ray if it does not include the end point or a half line if it includes the end point.
Yes. Those lines are examples of when an inequality (≥ or ≤) is graphed.
The line must be solid if the inequality is strict (less than or greater than). It must be a dashed line if otherwise (less than or equal to, greater than or equal to).
They are the same line.
The set of points the graphed equations have in common. This is usually a single point but the lines can be coincident in which case the solution is a line or they can be parallel in which case there are no solutions to represent.
When graphing a linear inequality, the first step is to replace the inequality symbol with an equal sign to graph the corresponding linear equation. This creates a boundary line, which can be solid (for ≤ or ≥) or dashed (for < or >) depending on whether the points on the line are included in the solution set. After graphing the line, you then determine which side of the line represents the solution set by testing a point (usually the origin if it's not on the line) to see if it satisfies the original inequality. Finally, shade the appropriate region to indicate the solutions to the inequality.