Question: Sin x + Cos x = 1 ; Solve for x.
Sin x + Cos x = 1 //Original Question
[Sin x + Cos x]2 = [1]2 //Square both sides
Sin2 x + 2 Sin x Cos x + Cos2 x = 1 // Expand.
1 + 2 Sin x Cos x = 1 //Note that sin2 x + cos2 x = 1 from the trigonometry identities. Look for proof below.
2 Sin x Cos x = 0 // Subtract 1 from both sides
So either
1) Sin x = 0
Looking at the unit circle, then this means x = 180ko where k E I
2) Cos x = 0
Looking at the unit circle, then this means x = 90 + 180k where k E I
3) 2 = 0
No solutions for this case.
**************************************
* So that's all x for which Sin x + Cos x = 1. *
**************************************
Proof for Identity used to solve this question:
Sin2 x + Cos2 x = 1
Imagine a right-angled triangle with an angle x and sides (A adjacent, O opposite, H hypotenuse):
_____.
____...
_H_.....
__....... O
_.........
..x.......
A
Then you know from the Pythagorean Theorem that A2 + O2 = H2
You also know from the definition of Cos and Sin that:
Sin x = O / H
Cos x = A / H
Now take the sum of the squares of both.
Sin2 x + Cos2 x
= [O / H]2 + [A / H]2
= O2 / H2 + A2 / H2
= ( O2 + A2 ) / H2
= ( H2 ) / H2
= 1
Q.E.D.
That's it.
Good Luck!
[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,
No. sin(0) = 0 So cos(0)*sin(0) = 0 so the left hand side = 1
sin cubed + cos cubed (sin + cos)( sin squared - sin.cos + cos squared) (sin + cos)(1 + sin.cos)
Suppose csc(x)*sin(x) = cos(x)*cot(x) + y then, ince csc(x) = 1/sin(x), and cot(x) = cos(x)/sin(x), 1 = cos(x)*cos(x)/sin(x) + y so y = 1 - cos2(x)/sin(x) = 1 - [1 - sin2(x)]/sin(x) = [sin2(x) + sin(x) - 1]/sin(x)
cos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan x
[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,
sec + tan = cos /(1 + sin) sec and tan are defined so cos is non-zero. 1/cos + sin/cos = cos/(1 + sin) (1 + sin)/cos = cos/(1 + sin) cross-multiplying, (1 + sin)2 = cos2 (1 + sin)2 = 1 - sin2 1 + 2sin + sin2 = 1 - sin2 2sin2 + 2sin = 0 sin2 + sin = 0 sin(sin + 1) = 0 so sin = 0 or sin = -1 But sin = -1 implies that cos = 0 and cos is non-zero. Therefore sin = 0 or the solutions are k*pi radians where k is an integer.
No. sin(0) = 0 So cos(0)*sin(0) = 0 so the left hand side = 1
2 cos * cos * -1 = 2cos(square) * -1 =cos(square) + cos(square) *-1 =1- sin(square) +cos(square) * -1 1 - 1 * -1 =0
sin x/(1+cos x) + cos x / sin x Multiply by sin x (1+cos x) =[(sin^2 x + cos x(1+cos x) ] / sin x (1+cos x) = [(sin^2 x + cos x + cos^2 x) ] / sin x (1+cos x) sin^2 x + cos^2 x = 1 = (1+cos x) / sin x (1+cos x) = 1/sin x
sin cubed + cos cubed (sin + cos)( sin squared - sin.cos + cos squared) (sin + cos)(1 + sin.cos)
The result is variant, therefore uncertain. The only sure thing is that sin(x)2 + cos(x)2 = 1.
cos*cot + sin = cos*cos/sin + sin = cos2/sin + sin = (cos2 + sin2)/sin = 1/sin = cosec
If x = sin θ and y = cos θ then: sin² θ + cos² θ = 1 → x² + y² = 1 → x² = 1 - y²
A*sin(x) + cos(x) = 1B*sin(x) - cos(x) = 1Add the two equations: A*sin(x) + B*sin(x) = 2(A+B)*sin(x) = 2sin(x) = 2/(A+B)x = arcsin{2/(A+B)}That is the main solution. There may be others: depending on the range for x.
(2 sin^2 x - 1)/(sin x - cos x) = sin x + cos x (sin^2 x + sin^2 x - 1)/(sin x - cos x) =? sin x + cos x [sin^2 x - (1 - sin^2 x)]/(sin x - cos x) =? sin x + cos x (sin^2 x - cos^2 x)/(sin x - cos x) =? sin x + cos x [(sin x - cos x)(sin x + cos x)]/(sin x - cos x) =? sin x + cos x sin x + cos x = sin x + cos x
When tan A = 815, sin A = 0.9999992 and cos A = 0.0012270 so that sin A + cos A*cos A*(1-cos A) = 1.00000075, approx.