right apex. hope that helps
5
Go study
2
The y coordinate is given below:
-2
Down
If the coefficient ( a ) in the equation of a parabola (typically given in the form ( y = ax^2 + bx + c )) is positive, the parabola opens upwards. This means that the vertex of the parabola is the lowest point, and as you move away from the vertex in either direction along the x-axis, the y-values increase.
If the equation of the parabola isy = ax^2 + bx + c, then it opens above when a>0 and opens below when a<0. [If a = 0 then the equation describes a straight line, and not a parabola!].
5
Go study
To determine the equation of a parabola with a vertex at the point (5, -3), we can use the vertex form of a parabola's equation: (y = a(x - h)^2 + k), where (h, k) is the vertex. Substituting in the vertex coordinates, we have (y = a(x - 5)^2 - 3). The value of "a" will determine the direction and width of the parabola, but any equation in this form with varying "a" values could represent the parabola.
We will be able to identify the answer if we have the equation. We can only check on the coordinates from the given vertex.
2
The coordinates will be at the point of the turn the parabola which is its vertex.
The y coordinate is given below:
A parabola that opens upward is a U-shaped curve where the vertex is the lowest point on the graph. It can be represented by the general equation y = ax^2 + bx + c, where a is a positive number. The axis of symmetry is a vertical line passing through the vertex, and the parabola is symmetric with respect to this line. The focus of the parabola lies on the axis of symmetry and is equidistant from the vertex and the directrix, which is a horizontal line parallel to the x-axis.
-2