answersLogoWhite

0

The coordinates will be at the point of the turn the parabola which is its vertex.

User Avatar

Wiki User

10y ago

What else can I help you with?

Related Questions

What is the y-coordinate of the vertex of the parabola that is given by the equation below?

We will be able to identify the answer if we have the equation. We can only check on the coordinates from the given vertex.


Is knowing the coordinates of the vertex of a parabola enough to determine the domain and range?

i think that the range and the domain of a parabola is the coordinates of the vertex


What different information do you get from vertex form and quadratic equation in standard form?

The graph of a quadratic function is always a parabola. If you put the equation (or function) into vertex form, you can read off the coordinates of the vertex, and you know the shape and orientation (up/down) of the parabola.


The vertex of the parabola below is at the point (5 -3). Which of the equations below could be the one for this parabolaus anything?

To determine the equation of a parabola with a vertex at the point (5, -3), we can use the vertex form of a parabola's equation: (y = a(x - h)^2 + k), where (h, k) is the vertex. Substituting in the vertex coordinates, we have (y = a(x - 5)^2 - 3). The value of "a" will determine the direction and width of the parabola, but any equation in this form with varying "a" values could represent the parabola.


What is the vertex of a parabola that opens down called?

The vertex of a parabola that opens down is called the maximum point. This point represents the highest value of the function described by the parabola, as the graph decreases on either side of the vertex. In a quadratic equation of the form (y = ax^2 + bx + c) where (a < 0), the vertex can be found using the formula (x = -\frac{b}{2a}). The corresponding (y)-value can then be calculated to determine the vertex's coordinates.


What is the equation of vertex in parabola?

0,0


What is a quadratic equation in vertex form for a parabola with vertex (11 -6)?

A quadratic equation in vertex form is expressed as ( y = a(x - h)^2 + k ), where ((h, k)) is the vertex of the parabola. For a parabola with vertex at ((11, -6)), the equation becomes ( y = a(x - 11)^2 - 6 ). The value of (a) determines the direction and width of the parabola. Without additional information about the parabola's shape, (a) can be any non-zero constant.


What does calculate the vertex mean in math terms?

Most likely you have an equation of a parabola. The vertex of a parabola is the location where it changes from going down, to going up (a simplified explanation). Most parabolas that we think of are oriented up or down (the axis is parallel to the y axis), but they could be oriented sideways, or even at an angle. To calculate the vertex of a parabola ususally means to find the coordinates of the vertex.


How do you find the equation of a parabola if you know the vertex and a point it passes through?

Use this form: y= a(x-h)² + k ; plug in the x and y coordinates of the vertex into (h,k) and then the other point coordinates into (x,y) and solve for a.


The vertex of the parabola below is at the point (-4-2) which equation below could be one for parabola?

-2


What is the parabola equation?

the equation of a parabola is: y = a(x-h)^2 + k *h and k are the x and y intercepts of the vertex respectively * x and y are the coordinates of a known point the curve passes though * solve for a, then plug that a value back into the equation of the parabola with out the coordinates of the known point so the equation of the curve with the vertex at (0,3) passing through the point (9,0) would be.. 0 = a (9-0)^2 + 3 = 0 = a (81) + 3 = -3/81 = a so the equation for the curve would be y = -(3/81)x^2 + 3


What is the equation of a parabola with a vertex at 0 0 and a focus at 0 6?

The standard equation for a Parabola with is vertex at the origin (0,0) is, x2 = 4cy if the parabola opens vertically upwards/downwards, or y2 = 4cx when the parabola opens sideways. As the focus is at (0,6) then the focus is vertically above the vertex and we have an upward opening parabola. Note that c is the distance from the vertex to the focus and in this case has a value of 6 (a positive number). The equation is thus, x2 = 4*6y = 24y