No. In fact, the sum of conjugate Irrational Numbers is always rational.
For example, 2 + sqrt(3) and 2 - sqrt(3) are both irrational, but their sum is 4, which is rational.
Chat with our AI personalities
The sum or the difference between two irrational numbers could either be rational or irrational, however, it should be a real number.
Yes, as long as the two are not mutual resiprocals.
Let R1 = rational number Let X = irrational number Assume R1 + X = (some rational number) We add -R1 to both sides, and we get: -R1 + x = (some irrational number) + (-R1), thus X = (SIR) + (-R1), which implies that X, an irrational number, is the sum of two rational numbers, which is a contradiction. Thus, the sum of a rational number and an irrational number is always irrational. (Proof by contradiction)
The sum, or difference, of two irrational numbers can be rational, or irrational. For example, if A = square root of 2 and B = square root of 3, both the sum and difference are irrational. If A = (1 + square root of 2), and B = square root of 2, then, while both are irrational, the difference (equal to 1) is rational.
Well, darling, when you add two irrational numbers together, they can sometimes magically cancel each other out in such a way that the sum ends up being a rational number. It's like mixing oil and water and somehow getting a delicious vinaigrette. Math can be a wild ride, honey.