answersLogoWhite

0

not always. nothing can be generalized about the sum of two irrational number. counter example. x=(sqrt(2) + 1), y=(1 - sqrt20) then x + y = 1, rational.

User Avatar

Wiki User

16y ago

Still curious? Ask our experts.

Chat with our AI personalities

EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
RossRoss
Every question is just a happy little opportunity.
Chat with Ross
LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao

Add your answer:

Earn +20 pts
Q: Is the sum of two irrational numbers irrational?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Basic Math

Is the sum of any two irrational number is an irrational number?

The sum of two irrational numbers may be rational, or irrational.


Is the sum of two irrational numbers also an irrational number?

Not necessarily. 3+sqrt(2) and 3-sqrt(2) are both irrational numbers. Their sum is 6 - a rational.


Can you add two irrational numbers to get a rational number?

Yes Yes, the sum of two irrational numbers can be rational. A simple example is adding sqrt{2} and -sqrt{2}, both of which are irrational and sum to give the rational number 0. In fact, any rational number can be written as the sum of two irrational numbers in an infinite number of ways. Another example would be the sum of the following irrational quantities [2 + sqrt(2)] and [2 - sqrt(2)]. Both quantities are positive and irrational and yield a rational sum. (Four in this case.) The statement that there are an infinite number of ways of writing any rational number as the sum of two irrational numbers is true. The reason is as follows: If two numbers sum to a rational number then either both numbers are rational or both numbers are irrational. (The proof of this by contradiction is trivial.) Thus, given a rational number, r, then for ANY irrational number, i, the irrational pair (i, r-i) sum to r. So, the statement can actually be strengthened to say that there are an infinite number of ways of writing a rational number as the sum of two irrational numbers.


Is the sum of a rational number irrational?

No - the sum of any two rational numbers is still rational:


Is the sum of two rational numbers is two rational numbers?

Yes, Rational numbers are numbers that can be written as a fraction. Irrational numbers cannot be expressed as a fraction.