answersLogoWhite

0

For a linear I can see no advantage in the table method.

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi

Add your answer:

Earn +20 pts
Q: What are advantages to using the table method when graphing a linear equation?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

Why is it the graphing method is the least reliable method in solving system of linear equations?

putang ina nyu


How do you solve a linear equation using the symbolic method?

you cant


What is graphing method?

In systems of equations, the graphing method is solving x and y by graphing out the two equations. x and y being the coordinates of the two line's intersection.


What are three ways of solving a system of linear equations?

I'll assume the simplified case of two equations, with two variables each. Some of the methods can be extended to more complicated cases.Substitution: Solve for one variable in one equation, replace it in the other equation.Setting two quantities equal: For example, if 5x + 3y = 10, and 5x - 2y = 0, solve each equation for "5x", and set the two equal, with the result: 10 - 3y = 2y.Addition/subtraction: Add or subtract one equation (or a multiple of one equation) to the other. In the previous example, if you subtract the second equation from the first, you get an equation that doesn't contain x.In any of these cases, after solving for a single variable, replace in one of the original equations to get the other variable.


Solving the system of equations by graphing?

Solving a system of equations by graphing involves plotting the equations on the same coordinate plane and finding the point(s) where the graphs intersect, which represents the solution(s) to the system. Each equation corresponds to a line on the graph, and the intersection point(s) are where the x and y values satisfy both equations simultaneously. This method is visually intuitive but may not always provide precise solutions, especially when dealing with non-linear equations or when the intersection point is not easily identifiable due to the scale or nature of the graphs.