Rotating it about the origin 180° (either way, it's half a turn) will transform a point with coordinates (x, y) to that with coordinates (-x, -y)
Thus (2, 5) → (-2, -5)
The point with coordinates (p, q) will be rotated to the point with coordinates [(p - q)/sqrt(2), (p + q)/sqrt(2)].
You have to switch the x and y coordinates and multiply your new x coordinate by -1. You can also dram the point and rotate your paper physically by 90 degrees. Example: Your Coordinates: (3,8) New Coordinates: (-8,3) (3,8) ---> (8,3) ---> (-8,3) Another Ex: (-7,-1) --> (-1,-7) --> (1,-7)
(-1, -4) rotated 90 degrees anticlockwise
If you know how to rotate a triangle around the origin, treat the point as the origin.If you have Cartesian coordinates (that is x, y pairs) for the points of the triangle,subtract the coordinates of the centre of rotation from the coordinates of the triangle, do the rotation and then add them back on.Doing it geometrically:Draw line from centre of rotation to a point (for example a vertex)Measure the required angle from this line and draw in the rotated lineMeasure the distance from the centre of rotation to the original point and measure along the rotated line the required distance to get the rotated point.repeat for as many points as needed (eg the 3 vertices of the triangle) and join together the rotated points in the same was as the original points.[The construction lines drawn to the centre of rotation can be erased once the rotated point is found.]
It is (-1, 6).Also, if the rotation is 180 degrees, then clockwise or anticlockwise are irrelevant.It is (-1, 6).
To rotate a figure 180 degrees clockwise about the origin you need to take all of the coordinates of the figure and change the sign of the x-coordinates to the opposite sign(positive to negative or negative to positive). You then do the same with the y-coordinates and plot the resulting coordinates to get your rotated figure.
The point with coordinates (p, q) will be rotated to the point with coordinates [(p - q)/sqrt(2), (p + q)/sqrt(2)].
add the
That would depend on its original coordinates and in which direction clockwise or anti clockwise of which information has not been given.
To rotate a figure 90 degrees clockwise about the origin, simply swap the x and y coordinates of each point and then negate the new y-coordinate. This is equivalent to reflecting the figure over the line y = x and then over the y-axis.
The answer depends on whether the rotation is clockwise or anti-clockwise.For anti-clockwise rotation (the standard direction of rotation),old x-coordinate becomes new y-coordinate,old y-coordinate becomes minus new x-coordinate
Visualize a capital "N." Rotated 90 degrees counter-clockwise (a quarter turn to the left) it would look like a capital "Z."
.
The line segments will have been rotated by 180 degrees.
To rotate a figure 180 degrees clockwise, you can achieve this by first reflecting the figure over the y-axis and then reflecting it over the x-axis. This double reflection effectively rotates the figure 180 degrees clockwise around the origin.
180 degrees.
You have to switch the x and y coordinates and multiply your new x coordinate by -1. You can also dram the point and rotate your paper physically by 90 degrees. Example: Your Coordinates: (3,8) New Coordinates: (-8,3) (3,8) ---> (8,3) ---> (-8,3) Another Ex: (-7,-1) --> (-1,-7) --> (1,-7)