A "zero of a function" is a point where the dependent value (usually, Y) is zero. In the function f(x) = x2 - 2, for example, there are zeroes at -1.414 and +1.414.
The zeroes of the sine function are at all integer multiples of pi, i.e. 0, pi, 2pi, 3pi, etc. The zeroes of the cosine function are at the same points plus pi/2, i.e. pi/2, 3pi/2, 5pi/2, etc.
Another way to look at this is that the zeroes of sine are the even multiples of pi/2, and the zeros of cosine are the odd multiples of pi/2.
Chat with our AI personalities
Yes they are. Both have a a period of 2 pi
I find it convenient to express other trigonometric functions in terms of sine and cosine - that tends to simplify things. The secant function is even because it is the reciprocal of the cosine function, which is even. The tangent function is the sine divided by the cosine - an odd function divided by an even function. Therefore it is odd. The cosecant is the reciprocal of an odd function, so it is naturally also an odd function.
It doesn't really. Depending on the exact value of the argument, the cosine function can give both positive and negative results, for a negative argument. As to "why" the sine, or cosine, functions have certain values, just look at the function definition. Take points on a unit circle. The sine represents the y-coordinate for any point on the circle, while the cosine represents the x-coordinate for such a point. (There are also other ways to define the sine and the cosine functions.)
The derivative of negative cosine is positive sine.
Cosine squared theta = 1 + Sine squared theta