They always have a numerator but, if they are integers, the may not have a denominator.
It is a rational number.
Divide the numerator of the ratio by the denominator. The answer, with a denominator is the required unit fraction. And I have never ever used a diagram - I have no clue what it is or how to use it!
Numbers are either irrational (like the square root of 2 or pi) or rational (can be stated as a fraction using whole numbers). Irrational numbers are never rational.
Yes. A number can be either rational or irrational, but never both; otherwise there would be an inherent contradiction.
A rational number is any number that can be written in the form a/b, where a and b are integers and b ≠0. it is necessary to exclude 0 because the fraction represents a ÷ b, and division by zero is undefined.A rational expression is an expression that can be written in the form P/Q where P and Q are polynomials and the value of Q is not zero.Some examples of rational expressions:-5/3; (x^2 + 1)/2; 7/(y -1); (ab)/c; [(a^2)(b]/c^2; (z^2 + 3z + 2)/ (z + 1) ect.Like a rational number, a rational expression represents a division, and so the denominator cannot be 0. A rational expression is undefined for any value of the variable that makes the denominator equal to 0. So we say that the domain for a rational expression is all real numbers except those that make the denominator equal to 0.Examples:1) x/2Since the denominator is 2, which is a constant, the expression is defined for all real number values of x.2) 2/xSince the denominator x is a variable, the expression is undefined when x = 03) 2/(x - 1)x - 1 ≠0x ≠1The domain is {x| x ≠1}. Or you can say:The expression is undefined when x = 1.4) 2/(x^2 + 1)Since the denominator never will equal to 0, the domain is all real number values of x.
A rational number is any number that can be written in the form a/b, where a and b are integers and b ≠ 0. it is necessary to exclude 0 because the fraction represents a ÷ b, and division by zero is undefined.A rational expression is an expression that can be written in the form P/Q where P and Q are polynomials and the value of Q is not zero.Some examples of rational expressions:-5/3; (x^2 + 1)/2; 7/(y -1); (ab)/c; [(a^2)(b]/c^2; (z^2 + 3z + 2)/ (z + 1) ect.Like a rational number, a rational expression represents a division, and so the denominator cannot be 0. A rational expression is undefined for any value of the variable that makes the denominator equal to 0. So we say that the domain for a rational expression is all real numbers except those that make the denominator equal to 0.Examples:1) x/2Since the denominator is 2, which is a constant, the expression is defined for all real number values of x.2) 2/xSince the denominator x is a variable, the expression is undefined when x = 03) 2/(x - 1)x - 1 ≠ 0x ≠ 1The domain is {x| x ≠ 1}. Or you can say:The expression is undefined when x = 1.4) 2/(x^2 + 1)Since the denominator never will equal to 0, the domain is all real number values of x.
A rational number is any number that can be written in the form a/b, where a and b are integers and b ≠0. it is necessary to exclude 0 because the fraction represents a ÷ b, and division by zero is undefined.A rational expression is an expression that can be written in the form P/Q where P and Q are polynomials and the value of Q is not zero.Some examples of rational expressions:-5/3; (x^2 + 1)/2; 7/(y -1); (ab)/c; [(a^2)(b]/c^2; (z^2 + 3z + 2)/ (z + 1) ect.Like a rational number, a rational expression represents a division, and so the denominator cannot be 0. A rational expression is undefined for any value of the variable that makes the denominator equal to 0. So we say that the domain for a rational expression is all real numbers except those that make the denominator equal to 0.Examples:1) x/2Since the denominator is 2, which is a constant, the expression is defined for all real number values of x.2) 2/xSince the denominator x is a variable, the expression is undefined when x = 03) 2/(x - 1)x - 1 ≠0x ≠1The domain is {x| x ≠1}. Or you can say:The expression is undefined when x = 1.4) 2/(x^2 + 1)Since the denominator never will equal to 0, the domain is all real number values of x.
No, never.
Statement 1 is true but totally unnecessary. As integer is always a rational and you do not need to convert it to a fraction to determine whether or not it is rational. A negative fraction is can be rational or irrational. The fact that it is negative is irrelevant to its rationality. An integer number over a zero denominator is not defined and so cannot be rational or irrational or anything. It just isn't.
False.
yes
Always true. (Never forget that whole numbers are rational numbers too - use a denominator of 1 yielding an improper fraction of the form of all rational numbers namely a/b.)
All integers are rational numbers, but not all rational numbers are integers.2/1 = 2 is an integer1/2 is not an integerRational numbers are sometimesintegers.
Division by zero is specifically forbidden in mathematics.
3.6666 is the ratio of 36,666 to 10,000 . It's perfectly rational. If you said that the sixes go on forever and never end, then your number would be equal to 11/3 which is also perfectly rational.
Algebra is the study of unknown factors (known as variables). Algebraic fractions are fractions with variables in the numerator or denominator, such as 36/x. Others include x2/y or 5x/y3. Since division by 0 is impossible, variables in the denominator have certain restrictions. The denominator can never equal 0. Therefore, in the fractions 36/x . . . x cannot equal 0 x2/y . . . .y cannot equal 0 5x/y3 . . .y cannot equal 0 ---- [Edit] Yes. Also called rational expressions. An example: m + 7 ---------------------- (m - 6) (m + 2) so, m-6 cannot equal 0, this means that m cannot equal 6, and m + 2 cannot equal 0 also, this means that m cannot equal -2