45 degrees (+/- 180k degrees for any integer k) or pi/4 radians (+/- pi*k radians for any integer k).
A function cannot be one to many. Suppose y = tan(x) Now, since tan(x) = tan(x + pi) then tan(x + pi) = y But that means arctan(y) can be x or x+pi In order to prevent that sort of indeterminacy, the arctan function must be restricted to an interval of width pi. Any interval of that width would do and it could have been restricted to the first and second quadrants, or even from -pi/4 to 3*pi/4. The problem there is that in the middle of that interval the tan function becomes infinite which means that arctan would have a discontinuity in the middle of its domain. A better option, then, is to restrict it to the first and fourth quarters. Then the asymptotic values occur at the ends of the domain, which leaves the function continuous within the whole of the open interval.
tan A says nothing about tan B without further information.
If sin θ = tan θ, that means cos θ is 1 (since tan θ = (sin θ)/(cos θ)) (Usually in and equation a/b=a, b doesn't have to be 1 when a is 0, but cos θ = 1 if and only if sin θ = 0) The angles that satisfy cos θ = 1 is 2n(pi) (or 360n in degrees) When n is an integer. But if sin θ = tan θ = θ, the only answer is θ = 0. Because sin 0 is 0 and cos 0 is 1 and tan 0 is 0 The only answer would be when θ = 0.
tan(x) is the same as sin(x) / cos(x). Domain is all the real numbers, except those numbers where the cos(x) = 0. That is, the domain does not include pi/2, 3pi/2, 5pi/2, etc. The range includes all real numbers.tan(x) is the same as sin(x) / cos(x). Domain is all the real numbers, except those numbers where the cos(x) = 0. That is, the domain does not include pi/2, 3pi/2, 5pi/2, etc. The range includes all real numbers.tan(x) is the same as sin(x) / cos(x). Domain is all the real numbers, except those numbers where the cos(x) = 0. That is, the domain does not include pi/2, 3pi/2, 5pi/2, etc. The range includes all real numbers.tan(x) is the same as sin(x) / cos(x). Domain is all the real numbers, except those numbers where the cos(x) = 0. That is, the domain does not include pi/2, 3pi/2, 5pi/2, etc. The range includes all real numbers.
45 degrees (+/- 180k degrees for any integer k) or pi/4 radians (+/- pi*k radians for any integer k).
Tan of pi/2 + k*pi radians, for integer k, is not defined since tan = sin/cos and the cosine of these angles is 0. Since divsiion by 0 is not defined, the tan ratio is not defined.
tan3A-sqrt3=0 tan3A=sqrt3 3A=tan^-1(sqrt3) 3A= pi/3+npi A=pi/9+npi/3 n=any integer
5/8 = tan(x) x = tan-1(5/8) = tan-1(0.625) = 0.558599 + k*pi radians or 32.00538 + k*180 degrees where k is an integer
tan (0) = opposite/adjacent
does honey and milk mask make any tan
Tan - Titanium
-Tan. So titanium.
sin(60) or sin(PI/3) = sqrt(3)/2 cos(60) or cos(PI/3)=1/2 tan(60) or tan(PI/3) = sin(60)/cos(60)=sqrt(3) But we want tan for -sqrt(3). Tangent is negative in quadrant II and IV. In Quadrant IV, we compute 360-60=300 or 2PI-PI/3 =5PI/3 tan(5PI/3) = -sqrt(3) Tangent is also negative in the second quadrant, so we compute PI-PI/3=2PI/3 or 120 degrees. tan(t)=-sqrt(3) t=5PI/3 or 2PI/3 The period of tan is PI The general solution is t = 5PI/3+ n PI, where n is any integer t = 2PI/3+ n PI, where n is any integer
Any number can be a tan. So -sqrt(17), 19.56, 45678942 are all examples of tan. Cosine can have any value in the range [-1, 1].
It is used when a function takes the same values after some fixed interval, and multiples of that interval. For example, tan(x) = tax(x + 180) = tan(x + 360) = tan(x + n*180) for all integer values of n. So tan is said to be periodic, with period 180 degrees (or π radians).
The validity or invalidity of a function are not abstract but depend on its domain and codomain or range. If for any point, A, in the domain there is a unique point, B, in the range such that f(A) = B then the function is valid at A. The validity of a function can change from point to point. For example, f(x) = sqrt(x) is not a function from the set of Real Numbers to the set of Real Numbers because any negative number in the domain is not mapped to any value in the range. This can be corrected either by changing the domain to the set of non-negative Real Numbers or (if you are a more advanced mathematician) change the range to the set of Complex Numbers. Similarly the reciprocal function, f(x) = 1/x is valid everywhere except for x = 0. Or f(x) = tan(x) is valid except for x = 90+k*180 degrees for all integer values of k - so it is not valid at an infinite number of points.