x=pi/2+npi
45 degrees (+/- 180k degrees for any integer k) or pi/4 radians (+/- pi*k radians for any integer k).
A function cannot be one to many. Suppose y = tan(x) Now, since tan(x) = tan(x + pi) then tan(x + pi) = y But that means arctan(y) can be x or x+pi In order to prevent that sort of indeterminacy, the arctan function must be restricted to an interval of width pi. Any interval of that width would do and it could have been restricted to the first and second quadrants, or even from -pi/4 to 3*pi/4. The problem there is that in the middle of that interval the tan function becomes infinite which means that arctan would have a discontinuity in the middle of its domain. A better option, then, is to restrict it to the first and fourth quarters. Then the asymptotic values occur at the ends of the domain, which leaves the function continuous within the whole of the open interval.
If sin θ = tan θ, that means cos θ is 1 (since tan θ = (sin θ)/(cos θ)) (Usually in and equation a/b=a, b doesn't have to be 1 when a is 0, but cos θ = 1 if and only if sin θ = 0) The angles that satisfy cos θ = 1 is 2n(pi) (or 360n in degrees) When n is an integer. But if sin θ = tan θ = θ, the only answer is θ = 0. Because sin 0 is 0 and cos 0 is 1 and tan 0 is 0 The only answer would be when θ = 0.
tan A says nothing about tan B without further information.
tan(x) is the same as sin(x) / cos(x). Domain is all the real numbers, except those numbers where the cos(x) = 0. That is, the domain does not include pi/2, 3pi/2, 5pi/2, etc. The range includes all real numbers.tan(x) is the same as sin(x) / cos(x). Domain is all the real numbers, except those numbers where the cos(x) = 0. That is, the domain does not include pi/2, 3pi/2, 5pi/2, etc. The range includes all real numbers.tan(x) is the same as sin(x) / cos(x). Domain is all the real numbers, except those numbers where the cos(x) = 0. That is, the domain does not include pi/2, 3pi/2, 5pi/2, etc. The range includes all real numbers.tan(x) is the same as sin(x) / cos(x). Domain is all the real numbers, except those numbers where the cos(x) = 0. That is, the domain does not include pi/2, 3pi/2, 5pi/2, etc. The range includes all real numbers.
45 degrees (+/- 180k degrees for any integer k) or pi/4 radians (+/- pi*k radians for any integer k).
The tangent function, ( \tan(x) ), is not differentiable everywhere. It is differentiable wherever it is defined, which excludes points where the function has vertical asymptotes, specifically at ( x = \frac{\pi}{2} + k\pi ) for any integer ( k ). At these points, the function approaches infinity, leading to a discontinuity in its derivative. Thus, while ( \tan(x) ) is smooth and differentiable in its domain, it is not differentiable at the points where it is undefined.
Tan of pi/2 + k*pi radians, for integer k, is not defined since tan = sin/cos and the cosine of these angles is 0. Since divsiion by 0 is not defined, the tan ratio is not defined.
The equation (-\tan A = \tan A) is true only when (\tan A = 0). This occurs at angles where (A) is an integer multiple of (\pi) (e.g., (0, \pi, 2\pi), etc.). In general, (-\tan A) is not equal to (\tan A) for most values of (A). Thus, the statement is not universally true.
tan3A-sqrt3=0 tan3A=sqrt3 3A=tan^-1(sqrt3) 3A= pi/3+npi A=pi/9+npi/3 n=any integer
5/8 = tan(x) x = tan-1(5/8) = tan-1(0.625) = 0.558599 + k*pi radians or 32.00538 + k*180 degrees where k is an integer
tan (0) = opposite/adjacent
does honey and milk mask make any tan
-Tan. So titanium.
Tan - Titanium
sin(60) or sin(PI/3) = sqrt(3)/2 cos(60) or cos(PI/3)=1/2 tan(60) or tan(PI/3) = sin(60)/cos(60)=sqrt(3) But we want tan for -sqrt(3). Tangent is negative in quadrant II and IV. In Quadrant IV, we compute 360-60=300 or 2PI-PI/3 =5PI/3 tan(5PI/3) = -sqrt(3) Tangent is also negative in the second quadrant, so we compute PI-PI/3=2PI/3 or 120 degrees. tan(t)=-sqrt(3) t=5PI/3 or 2PI/3 The period of tan is PI The general solution is t = 5PI/3+ n PI, where n is any integer t = 2PI/3+ n PI, where n is any integer
Any number can be a tan. So -sqrt(17), 19.56, 45678942 are all examples of tan. Cosine can have any value in the range [-1, 1].