answersLogoWhite

0

ln 1 = 0

e0=1

User Avatar

Wiki User

14y ago

Still curious? Ask our experts.

Chat with our AI personalities

CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi
JudyJudy
Simplicity is my specialty.
Chat with Judy

Add your answer:

Earn +20 pts
Q: What does ln 1 equal?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

What is the value of loge if base is not equal to e?

You can calculate log to any base by using: logb(x) = ln(x) / ln(b) [ln is natural log], so if you have logb(e) = ln(e) / ln(b) = 1 / ln(b)


What is the derivative of y equals xlnx?

Use the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln xUse the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln xUse the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln xUse the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln x


Integral of ln2x?

I will denote an integral as \int (LaTeX). We can let u = 2x and du = 2dx, and substitute \int ln (2x) dx = (1/2) \int ln u du. Either using integration by parts or by memorization, this is equal to (1/2) u ln u - u + C = (1/2)(2x ln (2x) - 2x) + C, where C is an arbitrary constant.


How can you prove that yis equal to e raise to the power xlny?

Euler's constant, e, has some basic rules when used in conjunction with logs. e raised to x?æln(y),?æby rule is equal to (e raised to ln(y) raised to x). e raised to ln (y) is equal to just y. Thus it becomes equal to y when x = 1 or 0.


Does the series 1 divided by ln x converge?

Compare a series to a known series. So take the harmonic series {1/1 + 1/2 + 1/3 + ... + 1/n}, which diverges.For each number n [n>1], LN(n) < n, so 1/(LN(n)) > 1/n. So since each term in 1/LN(n) is greater than each term in the divergent series {1/n}, then the series 1/LN(n) diverges.