(x3 + 4x2 - 3x - 12)/(x2 - 3) = x + 4(multiply x2 - 3 by x, and subtract the product from the dividend)1. x(x2 - 3) = x3 - 3x = x3 + 0x2 - 3x2. (x3 + 4x2 - 3x - 12) - (x3 + 0x2 - 3x) = x3 + 4x2 - 3x - 12 - x3 + 3x = 4x2 - 12(multiply x2 - 3 by 4, and subtract the product from 4x2 - 12)1. 4x(x - 3) = 4x2 - 12 = 4x2 - 122. (4x2 - 12) - (4x2 - 12) = 4x2 - 12 - 4x2 + 12 = 0(remainder)
16x24=384 384 x3=1154 1154/12=
If x2 and x3 are meant to represent x2 and x3, then x2 times x3 = x5 You find the product of exponent variables by adding the exponents.
The inverse of a number is 1 divided by that number. So the inverse of x3 + 1 is 1/(x3 + 1).
notation: natural numbers = 0,1, 2, 3, 4, 5, ....., (some define it without the zero, though) <= means smaller than or equal to, {} is set notation and means a set of numbers : (such that) then some condition. For example {x: x is not a duck} is the set of all things not a duck. Our goal is to prove that there are 21 different times. let x1 = hours, x2 = tens of minutes, x3 = minutes. We are going to prove the statement about the set {x1, x2,x3: 1<=x1 <= 12, 0<= x2<=5, 0<=x3 <= 59, x1 + x2 + x3 = 6}. It will be taken by assumption that this set is the set of digital clock combinations that add up to 6. So then, we must prove that there are unique 21 elements in the set {x1 + x2 + x3 : 1<= x1 <= 12, 0<= x2<=5, 0<=x3 <= 59, x1 + x2 + x3 = 6}. {x1 , x2 , x3 : 1<= x1 <= 12, 0<= x2<=5, 0<=x3 <= 59, x1 + x2 + x3 = 6} = {x1 , x2 , x3 : 1<= x1 <= 6, 0<= x2<=5, 0<=x3 <= 5, x1 + x2 + x3 = 6} because x3<=6, and because if x1 >=1, then x2 + x3 <=5, and x3, x2 >= 0 , so surely x3, x2 <= x5. Either x1 = 1, 2, 3, 4, 5, or 6. Next, x1 + x2 + x3 = 6, so x2 + x3 = 6 - x1. There are n+1 natural numbers between 0 and n (I'm being lazy and not proving this, but the proof would be so much longer if I proved it), and since 0 <= x2 <= 5 <= 6-x1, there are at most 6-x1+1 values of x2 for each value of x1. When x1 = 1, there are a maximum of 6, when x1 = 2, there are 6-2+1 = 5, when x1 = 3, there are 6-3+1 = 4, when x1 = 3, there are 3, then 2, and then 1. Summing this up gives us a maximum of 21. So it is at most 21 and at least 21, so exactly 21.
(x3 + 4x2 - 3x - 12)/(x2 - 3) = x + 4(multiply x2 - 3 by x, and subtract the product from the dividend)1. x(x2 - 3) = x3 - 3x = x3 + 0x2 - 3x2. (x3 + 4x2 - 3x - 12) - (x3 + 0x2 - 3x) = x3 + 4x2 - 3x - 12 - x3 + 3x = 4x2 - 12(multiply x2 - 3 by 4, and subtract the product from 4x2 - 12)1. 4x(x - 3) = 4x2 - 12 = 4x2 - 122. (4x2 - 12) - (4x2 - 12) = 4x2 - 12 - 4x2 + 12 = 0(remainder)
The 2014 BMW X3 is 6 ft. 2.1 in. (74.1 in.)12 total speakers wide.
The 2012 BMW X3 is 6 ft. 2.1 in. (74.1 in.)12 total speakers wide.
The 2013 BMW X3 is 6 ft. 2.1 in. (74.1 in.)12 total speakers wide.
The 2011 BMW X3 is 6 ft. 2.1 in. (74.1 in.)12 total speakers wide.
feb 12 2013 x3
120 (assuming the pattern is x3, +1, x3, +1...)
x4/12 since derivative of x4/12 is 4x3/12 or x3/3
16x24=384 384 x3=1154 1154/12=
12
84x3y
x3 + 3x2 - 4x -12 x2(x + 3) - 4(x + 3) (x2 - 4)(x+3)