1350 = 2*3*3*3*5*5 = (3*3)*(5*5)*(2*3) = 32*52*6 So sqrt(1350) = sqrt(32*52*6) = sqrt(32)*sqrt(52)*sqrt(6) = 3*5*sqrt(6) = 15*sqrt(6)
sqrt(0.00032) = sqrt(32/100,000) = sqrt(25/2555) = sqrt(1/545) = sqrt(1/5)/52 = sqrt(0.2)/25
It is sqrt(62 + 32) = sqrt(36 + 9) = sqrt(45) = 3*sqrt(5) = 6.7082 (approx).
sqrt(32) = 4sqrt(2) ln surd form Numerically it is 5.656854249....~ 5.66
sqrt(32) = sqrt( 4 x 4 x 2 ) = 4 sqrt(2)
1350 = 2*3*3*3*5*5 = (3*3)*(5*5)*(2*3) = 32*52*6 So sqrt(1350) = sqrt(32*52*6) = sqrt(32)*sqrt(52)*sqrt(6) = 3*5*sqrt(6) = 15*sqrt(6)
sqrt 32= sqrt 2^5. Since there, we find 2 pairs of 2, we can make it 2^2 sqrt 2 or 4sqrt2.
sqrt(0.00032) = sqrt(32/100,000) = sqrt(25/2555) = sqrt(1/545) = sqrt(1/5)/52 = sqrt(0.2)/25
It is sqrt(62 + 32) = sqrt(36 + 9) = sqrt(45) = 3*sqrt(5) = 6.7082 (approx).
192
sqrt(8) x sqrt(32) = sqrt(8 x 32) = sqrt(256) = 16
sqrt(32) = sqrt(16*2) = sqrt(16)*sqrt(2) = 4*sqrt(2)
32
sqrt(32) = sqrt(16 x 2) = sqrt(16) x sqrt(2) = 4 sqrt(2)
sqrt(32) = sqrt( 16 x 2 ) = 4 sqrt(2) = 5.657 (rounded)
sqrt(32) = 4sqrt(2) ln surd form Numerically it is 5.656854249....~ 5.66
The exact solutions are x = 0.5*{-3 +/- sqrt[32 - 4*1*(-5)]} = 0.5*{-3 +/- sqrt[32 + 20]} = 0.5*{-3 +/- sqrt[29]} = - 3/2 - sqrt(29)/2 and - 3/2 + sqrt(29)/2 The approx equivalent solutions are -4.1926 and 1.1926