The periodicity of 0.5*sinx is the same as the periodicity of sinx, which is 360 degrees or 2*pi radians.
y = (sinx)^(e^x) ln(y) = ln((sinx)^(e^x)) ln(y) = (e^x)ln(sinx) (1/y)dy = (e^x)(1/sinx)(cosx)+ln(sinx)(e^x)dx (1/y)dy = (e^x)(cotx)+ln(sinx)(e^x)dx dy = ((sinx)^(e^x))((cotx)(e^x)+ln(sinx)(e^x))dx dy = ((e^x)(sinx)^(e^x))(cotx+ln(sinx))dx
d/dx(sinx-cosx)=cosx--sinx=cosx+sinx
Using the Chain Rule :derivative of (sinx)2 = 2(sinx)1 * (derivative of sinx)d/dx (Sinx)2 = 2(sinx)1 * [d/dx (Sinx)]d/dx (Sinx)2 = 2(sinx) * (cosx)d/dx (Sinx)2 = 2 (sinx) * (cosx)d/dx (Sinx)2 = 2 sin(x) * cos(x)
d/dx(-cosx)=--sinx=sinx
f(x)=sinx+cosx take the derivative f'(x)=cosx-sinx critical number when x=pi/4
cos2x + 2sinx - 2 = 0 (1-2sin2x)+2sinx-2=0 -(2sin2x-2sinx+1)=0 -2sinx(sinx+1)=0 -2sinx=0 , sinx+1=0 sinx=0 , sinx=1 x= 0(pi) , pi/2 , pi
half range--- 0 to x full range--- -x to x
x
First, find the upper limit of integration by setting xsin(x)=0. It should be pi. Then use integration by parts to integrate xsin(x) from 0 to pi u=x dv=sinx dx du=dx v=-cosx evaluate the -xcosx+sinx from 0 to pi the answer is pi ps webassign sucks
The periodicity of 0.5*sinx is the same as the periodicity of sinx, which is 360 degrees or 2*pi radians.
It's easiest to show all of the work (explanations/identities), and x represents theta. cosxcotx + sinx = cscx cosx times cosx/sinx + sinx = csc x (Quotient Identity) cosx2 /sinx + sinx = csc x (multiplied) 1-sinx2/sinx + sinx = csc x (Pythagorean Identity) 1/sinx - sinx2/sinx + sinx = csc x (seperate fraction) 1/sinx -sinx + sinx = csc x (canceled) 1/sinx = csc x (cancelled) csc x =csc x (Reciprocal Identity)
sqrt(2)*cos(x + pi/4) [with x in radians], or sqrt(2)*cos(x + 90°) [with x in degrees]
y = (sinx)^(e^x) ln(y) = ln((sinx)^(e^x)) ln(y) = (e^x)ln(sinx) (1/y)dy = (e^x)(1/sinx)(cosx)+ln(sinx)(e^x)dx (1/y)dy = (e^x)(cotx)+ln(sinx)(e^x)dx dy = ((sinx)^(e^x))((cotx)(e^x)+ln(sinx)(e^x))dx dy = ((e^x)(sinx)^(e^x))(cotx+ln(sinx))dx
given the identity sin(x+y)=sinx cosy + siny cosxsin2x = 2 sinx cosx andsin(2(x)+x) = sin 2x cos x + sinx cos 2xusing the last two identities givessin3x= 2 sinx cosx cosx + sinx cos2xfactoring the sinx we havesin3x = sinx(2cosx cosx+cos2x)which satisfies the requirement.However, we can simplify further since cos 2x = cosx cosx - sinx sinx (a well known identity)sin3x = sinx (2cosx cosx +cosx cosx - sinx sinx)so sin3x= sinx(3cosx cosx - sinx sinx)or sin 3x = 3.cos²x.sinx - sin³x* * * * *Good, but not good enough. The answer was required in terms of sin, not a mixture of sinx and cosx. Easily recitified, though, since cos²x = 1 - sin²xTherefore sin3x = 3*(1-sin²x)*sinx - sin³x= 3sinx - 3sin³x - sin³x= 3sinx - 4sin³x
Consider a periodic function, generally defined by f(x+t) = f(x) for some t. Any periodic function can be written as an infinite sum of sines and cosines. This is called a Fourier series.
d/dx(sinx-cosx)=cosx--sinx=cosx+sinx