answersLogoWhite

0

A parabola with vertex (h, k) has equation of the form:

y = a(x - h)² + k

→ vertex (k, h) = (2, -1), and a point on it is (5, 0)

→ 0 = a(5 - 2)² + -1

→ 0 = a(3)² -1

→ 1 = 9a

→ a = 1/9

→ The coefficient of the x² term is 1/9

User Avatar

Wiki User

8y ago

What else can I help you with?

Related Questions

The vertex of this parabola is at -3 -1 When the y-value is 0 the x-value is 4 What is the coefficient of the squared term in the parabolas equation?

The vertex of this parabola is at -3 -1 When the y-value is 0 the x-value is 4. The coefficient of the squared term in the parabolas equation is 7


The vertex of this parabola is at -2 -3 When the y-value is -2 the x-value is -5 What is the coefficient of the squared term in the parabolas equation?

7


When vertex of this parabola is at (35) . When the y-value is 6 the x-value is -1. what is the coefficient of the squared term in the parabolas equation?

It is 1/16.


What is the coefficient of the squared term in the parabolas equation When the y-value is -2 and the x-value is -5 and The vertex of this parabola is at -2 -3?

A coefficient is a number that accompanies a variable. For example, in the expression 2x + 4, the coefficient is 2.


The vertex of this parabola is at 3 1 When the y-value is 0 the x-value is 4 What is the coefficient of the squared term in the parabolas equation?

To find the coefficient of the squared term in the parabola's equation, we can use the vertex form of a parabola, which is (y = a(x - h)^2 + k), where ((h, k)) is the vertex. Given the vertex at (3, 1), the equation starts as (y = a(x - 3)^2 + 1). Since the parabola passes through the point (4, 0), we can substitute these values into the equation: (0 = a(4 - 3)^2 + 1), resulting in (0 = a(1) + 1). Solving for (a), we find (a = -1). Thus, the coefficient of the squared term is (-1).


The vertex of this parabola is at -2 -3 When the y-value is -2 the x-value is -5 What is the coefficient of the squared term in the parabola's equation?

The vertex of this parabola is at -2 -3 When the y-value is -2 the x-value is -5. The coefficient of the squared term in the parabola's equation is -3.


The vertex of this parabola is at 5 5 When the x-value is 6 the y-value is -1 What is the coefficient of the squared expression in the parabola's equation?

The vertex of this parabola is at 5 5 When the x-value is 6 the y-value is -1. The coefficient of the squared expression in the parabola's equation is -6.


The vertex of this parabola is at 3 -2 When the x value is 4 the y value is 3 What is the coefficient of the squared expression in the parabolas equation?

Vertex = (3, - 2)Put in vertex form.(X - 3)2 + 2X2 - 6X + 9 + 2 = 0X2 - 6X + 11 = 0=============The coefficeint of the squared term is 1. My TI-84 confirms the (4, 3) intercept of the parabola and the 11 Y intercept shown by the function.


The vertex of this parabola is at 4 -3 When the x-value is 5 the y-value is -6 What is the coefficient of the squared expression in the parabola's equation?

-3


The vertex of this parabola is at (2, -4) When the y-value is -3, the x-value is -3 What is the coefficient of the squared term in the parabola's equation?

-5


The vertex of this parabola is at (4 -3). When the x-value is 5 the y-value is -6. What is the coefficient of the squared expression in the parabola's equation?

-3


What is the parabola?

A parabola is a type of graph that is not linear, and mostly curved. A parabola has the "x squared" sign in it's equation. A parabola is not only curved, but all the symmetrical. The symmetrical point, the middle of the parabola is called the vertex. You can graph this graph with the vertex, x-intercepts and a y-intercept. A parabola that has a positive x squared would be a smile parabola, and the one with the negative x squared would be a frown parabola. Also, there are the parabolas that are not up or down, but sideways Those parabolas have x=y squared, instead of y = x squared.