Centre of circle: (2, 1.25)
Slope of line: 9/4
Equation of line: y-1.25 = 9/4(x-2) => 4y-5 = 9x-18 => 4y = 9x-13
Yes, the perpendicular bisector of a cord is the shortest distance from the centre of a circle to the cord.
Equation of a circle: (x-h)^2+(y-h)^2=r^2 k is the x-coordinate for the centre, h is the y-coordinate for the centre r=raduis if the equation is x^2+y^2=r^2, the centre of the circle is at (0,0)
The three perpendicular bisectors (of the sides) of a triangle intersect at the circumcentre - the centre of the circle on which the three vertices of the triangle sit.
The equation for a circle of radius r and centre (h, k) is: (x - h)² + (y - k)² = r² If the centre is the origin, the centre point is (0, 0), thus h = k = 0, and this becomes: x² + y² = r²
Circle equation: x^2 +y^2 -8x -16y -209 = 0 Completing the squares: (x-4)^2 +(y-8)^2 = 289 Centre of circle: (4, 8) Radius of circle 17 Slope of radius: 0 Perpendicular tangent slope: 0 Tangent point of contact: (21, 8) Tangent equation: x = 21 passing through (21, 0)
Yes, the perpendicular bisector of a cord is the shortest distance from the centre of a circle to the cord.
A circle is a shape that has no particular direction. There is, therefore, no particular direction for anything to be perpendicular to. To that extent, this question is nonsense.Every diameter of a circle bisects it, so just draw any line through its centre!
Yes. The perpendicular bisector of a chord forms a radius when extended to the centre of the circle and a diameter when extended beyond the centre to the opposite point on the circumference.
The apothem, for a circle, is the perpendicular distance from a chord to the centre of the circle.
Equation of a circle when its centre is at (0, 0): x^2 + y^2 = radius^2 Equation of a circle when its centre is at (a, b): (x-a)^2 + (y-b)^2 = radius^2
A circle or annulus. Each of its infinite number of diameters is an axis of symmetry. Plus there is the line through its centre and perpendicular to the plane of the circle.
Draw a circle with centre O. draw a tangent PR touching circle at P. Draw QP perpendicular to RP at point P, Qp lies in the circle. Now, angle OPR = 90 degree (radius perpendicular to tangent) also angle QPR = 90 degree (given) Therefore angle OPR = angle QPR. This is possible only when O lies on QP. Hence, it is prooved that the perpendicular at the point of contact to the tangent to a circle passes through the centre. Answer By- Rajendra Meena, Jaipur, India. email: rajendra.meena21@gmail.com
x² + 4x - 18y + 59 = 0 is not a circle; it can be rearranged into: y = (x² + 4x + 59)/18 which is a parabola. You have missed out a y² term. ------------------------------------------------------------ Assuming you meant: x² + 4x + y² - 18y + 59 = 0, then: The perpendicular bisector of a chord passes through the centre of the circle. The slope m' of a line perpendicular to another line with slope m is given by m' = -1/m The chord y = x + 5 has slope m = 1 → the perpendicular bisector has slope m' = -1/1 = -1 A circle with centre Xc, Yc and radius r has an equation in the form: (x - Xc)² + (y - Yc)² = r² The equation given for the circle can be rearrange into this form by completing the square in x and y: x² + 4x + y² - 18y + 59 = 0 → (x + (4/2))² - (4/2)² + (y - (18/2))² - (18/2)² + 59 = 0 → (x + 2)² +(y - 9)² - 2² - 9² + 59 = 0 → (x + 2)² + (y - 9)² = 4 + 81 - 59 → the circle has centre (-2, 9) (The radius, if wanted, is given by r² = 4 + 81 - 59 = 36 = 6²) The equation of a line with slope m' through a point (Xc, Yc) has equation: y - Yc = m'(x - Xc) → y - 9 = -1(x - -2) → y - 9 = -x - 2 → y + x = 7 The perpendicular bisector of the chord y = x + 5 within the circle x² + 4x + y² - 18y + 59 = 0 is y + x = 7
Draw a line from any part on the outside of a circle to the exact center of the circle. * * * * * That is fine if you know where the center is but not much use if you are just given a circle and do not know where the exact centre is. In this case: Draw a chord - a straight line joining any two points on the circumference of the circle. Then draw the perpendicular bisector of the chord. Draw another chord and its perpendicular bisector. The two perpendicular bisectors will meet at the centre.
Equation of a circle: (x-h)^2+(y-h)^2=r^2 k is the x-coordinate for the centre, h is the y-coordinate for the centre r=raduis if the equation is x^2+y^2=r^2, the centre of the circle is at (0,0)
The equation for any circle is r2 = (x-a)2 + (y-b)2 Where r is the radius and the centre of the circle is (a,b)
In the coordinate plane, if the centre of the circle is at (a, b) then the equation is(x - a)^2 + (y - b)^2 = 2^2