If the two adjacent sides of a triangle are 3' and 4', the hypotenuse is: 5'
a2+b2=c2 Example: a=4 b=3 4 times 4= 16 3 times 3= 9 16+9= 25 square root of 25= 5 hypotenuse= 5
a2+b2=c2 Example: a=4 b=3 4 times 4= 16 3 times 3= 9 16+9= 25 square root of 25= 5 hypotenuse= 5
The length of the hypotenuse = √(4^2 + 6^2) = √52 ≈ 7.21 in
SinA = 1/3 = Opposite/HypotenuseTherefore taking Opposite to be 1cm and Hypotenuse to be 3cm.Therefore Adjacent side = Root of 32 - 12= root 8CosA = Adjacent/Hypotenuse = root8 / 3CosecA = Hypotenuse/Opposite = 3/1TanA = Opposite/Adjacent = 1 / root8SecA = Hypotenuse/Adjacent = 3 / root8Therefore,(CosA.CosecA) + (TanA.SecA) = (root8 / 3 . 3 / 1) + (1 / root8 . 3 / root8)= (root8) + (3 / 8)= 2(root2) + (3 / 8)
Given the legs a and b of a triangle are 3 and 4, the hypotenuse is: 5
If the two adjacent sides of a triangle are 3' and 4', the hypotenuse is: 5'
The hypotenuse dimension for a right triangle with 3 and 4 leg dimensions is: 5
Its hypotenuse is 5 units in length
Its hypotenuse is 5 and its sides are 3 and 4
a2+b2=c2 Example: a=4 b=3 4 times 4= 16 3 times 3= 9 16+9= 25 square root of 25= 5 hypotenuse= 5
a2+b2=c2 Example: a=4 b=3 4 times 4= 16 3 times 3= 9 16+9= 25 square root of 25= 5 hypotenuse= 5
a2+b2=c2 Example: a=4 b=3 4 times 4= 16 3 times 3= 9 16+9= 25 square root of 25= 5 hypotenuse= 5
4/5
a2+b2=c2 Example: a=4 b=3 4 times 4= 16 3 times 3= 9 16+9= 25 square root of 25= 5 hypotenuse= 5
a2+b2=c2 Example: a=4 b=3 4 times 4= 16 3 times 3= 9 16+9= 25 square root of 25= 5 hypotenuse= 5
It's 6,40312. 4²+5²= hypotenuse ² 16+25=hypotenuse ² 41=hypotenuse ² |√ 6,40312=hypotenuse