sqrt(ab^2 + bc^2)
Chat with our AI personalities
Assuming you mean side AB is 5: If angle B is the right angle, side AC is the hypotenuse and is of length 6. If angle A is the right angle, side BC is the hypotenuse and is of length sqrt(52 + 62) ~= 7.81 Angle C cannot be the right angle as then side AB would be the hypotenuse but the hypotenuse is the longest side and side AB is shorter than AC.
The length of the hypotenuse is: 10
-- The length of each leg is (length of the hypotenuse) / sqrt(2) = 0.7071 x (hypotenuse). -- The length of the hypotenuse is (length of either leg) x sqrt(2) = 1.414 x (leg)
Take a right angled triangle ABC with the right angle at B, so that AC is the hypotenuse. Let AC be 1 unit long. Using the angle CAB, the length of AC and the trigonometric ratios: sin = opposite/hypotenuse ⇒ sin CAB = AB/AC = AB/1 = AB cos = adjacent/hypotenuse ⇒ cos CAB = BC/AC = BC/1 = BC Using Pythagoras: AB2 + BC2 = AC2 ⇒ (sin CAB)2 + (cos CAB)2 = 12 ⇒ sin2θ + cos2θ = 1
The hypotenuse of the nth triangle has a length of sqrt(n+1)