1
Both the function "cos x" and the function "sin x" have a maximum value of 1, and a minimum value of -1.
[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,
Note that an angle should always be specified - for example, 1 - cos square x. Due to the Pythagorean formula, this can be simplified as sin square x. Note that sin square x is a shortcut of (sin x) squared.
It would be 1 over square root 5.
-cos(x) + constant
The maximum value of the sine function, (\sin(x)), is 1, while the minimum value of the cosine function, (\cos(x)), is -1. Therefore, the sum of the maximum value of sine and the minimum value of cosine is (1 + (-1) = 0).
Both the function "cos x" and the function "sin x" have a maximum value of 1, and a minimum value of -1.
(sin(x))^2+(cos(x))^2=1
When tan A = 815, sin A = 0.9999992 and cos A = 0.0012270 so that sin A + cos A*cos A*(1-cos A) = 1.00000075, approx.
If tan 3a is equal to sin cos 45 plus sin 30, then the value of a = 0.4.
The answer to the math question Cos 5t cos 3t -square root 3 2 - sin 5t cos 3t equals 0. In order to find this answer you will have to find out what each letter is.
[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,
(1/8)(x-sin 4x)
sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)
Note that an angle should always be specified - for example, 1 - cos square x. Due to the Pythagorean formula, this can be simplified as sin square x. Note that sin square x is a shortcut of (sin x) squared.
The trigonometric value equal to cos 47° is sin(90° - 47°), which is sin 43°. This is based on the co-function identity in trigonometry, where the cosine of an angle is equal to the sine of its complement. Therefore, cos 47° = sin 43°.
It would be 1 over square root 5.