n+n(n+1) (n+3) /6
The first differences are 5, 7, 9, 11, 13 and the second differences are 2,2,2,2 so the formula for the nth term is a quadratic. tn = n2 + 2n - 2 (n = 1,2,3,...)
The nth term is 3n+7 and so the next number will be 22
+9
To find the nth term of a sequence, we first need to identify the pattern. In this case, it appears that the sequence is increasing by consecutive odd numbers: 3, 5, 7, 9, 11, etc. Therefore, the nth term can be calculated using the formula: nth term = a + (n-1)d, where a is the first term (5), n is the term number, and d is the common difference (3 for this sequence). So, the nth term for this sequence would be 5 + (n-1)3, which simplifies to 3n + 2.
3n+7
The given sequence is 1, 6, 13, 22, 33. To find the nth term, we can observe that the differences between consecutive terms are 5, 7, 9, and 11, which indicates that the sequence is quadratic. The nth term can be expressed as ( a_n = n^2 + n ), where ( a_n ) is the nth term of the sequence. Thus, the formula for the nth term is ( a_n = n^2 + n ).
The first differences are 5, 7, 9, 11, 13 and the second differences are 2,2,2,2 so the formula for the nth term is a quadratic. tn = n2 + 2n - 2 (n = 1,2,3,...)
The nth term is 3n+7 and so the next number will be 22
+9
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 9, then 13, then 17, and so on. This pattern indicates that the nth term is given by the formula n^2 + n - 1. So, the nth term of the sequence 0, 9, 22, 39, 60 is n^2 + n - 1.
To find the nth term of a sequence, we first need to identify the pattern. In this case, it appears that the sequence is increasing by consecutive odd numbers: 3, 5, 7, 9, 11, etc. Therefore, the nth term can be calculated using the formula: nth term = a + (n-1)d, where a is the first term (5), n is the term number, and d is the common difference (3 for this sequence). So, the nth term for this sequence would be 5 + (n-1)3, which simplifies to 3n + 2.
x2-3=n
3n+7
The given sequence is -2, 1, 6, 13, 22, 33. To find the nth term, we observe that the differences between consecutive terms are increasing by 2 (3, 5, 7, 9). This indicates a quadratic pattern, and the nth term can be expressed as ( a_n = n^2 + n - 2 ). Thus, the nth term of the sequence is ( a_n = n^2 + n - 2 ).
If you meant: 2 12 22 32 then the nth term = 10n-8
It is: nth term = 29-7n
t(n) = 28-3n where n = 1,2,3,...