The probability is 25%.
The probability of flipping a coin once and getting heads is 50%. In your example, you get heads twice -- over the course of 2 flips. So there are two 50% probabilities that you need to combine to get the probability for getting two heads in two flips.
So turn 50% into a decimal --> 0.5
Multiply the two 50% probabilities together --> 0.5 x 0.5 = 0.25.
Therefore, 0.25 or 25% is the probability of flipping a coin twice and getting heads both times.
The probability of this is 50%. 2/4
For 3 coin flips: 87% chance of getting heads at least once 25% chance of getting heads twice 13% chance of getting heads all three times
The probability of landing on heads each time a fair coin is flipped, is 1/2.Assuming that the question was supposed to be:"What is the probability of landing on heads twice in a row?"To calculate compound probabilities like this, we first have to work out the probability of landing on heads each time, and then multiply these two probabilities to get a compound probability.1/2 x 1/2 = 1/4So the probability of landing on heads twice in a row = 1/4 (for a fair coin)
The sample space is HH, HT, TH, HH. Since the HH combination can occur once out of four times, the probability that if a coin is flipped twice the probability that both will be heads is 1/4 or 0.25.
The answer depends on how many times the coin is tossed. The probability is zero if the coin is tossed only once! Making some assumptions and rewording your question as "If I toss a fair coin twice, what is the probability it comes up heads both times" then the probability of it being heads on any given toss is 0.5, and the probability of it being heads on both tosses is 0.5 x 0.5 = 0.25. If you toss it three times and want to know what the probability of it being heads exactly twice is, then the calculation is more complicated, but it comes out to 0.375.
The probability of this is 50%. 2/4
Well, you have 24 possibilities, and you can get heads 6 ways, so it is 1/4.
Your question is a bit difficult to understand. I will rephrase it as follows: What is the probability of getting a head if a coin is flipped once? p = 0.5 What is the probability of getting 2 heads if a coin is flipped twice = The possible events are HT, TH, HH, TT amd all are equally likely. So the probability of HH is 0.25. What is the probability of getting at least on head if the coin is flipped twice. Of the possible events listed above, HT, TH and HH would satisfy the condition of one or more heads, so the probability is 3 x 0.25 = 0.75 or 3/4. Also, since the probability of TT is 0.25, and the probability of all events must sum to 1, then we calculate the probability of one or more heads to be 1-0.25 = 0.75
The best way to think about this is the following way: What is the probability of flipping heads once? 1/2 What is the probability of flipping heads twice? 1/4 (1/2 * 1/2) Using this we can derive the equation to find the probability of flipping heads any number of times. 1/2n Using this we plug in 25 for n and get 1/225 or as a decimal 2.98023224 x 10-8 or as odds 1:33,554,432
The answer is 1/2 , assuming the coin is fair.
If you flip a coin twice, there are four possible results:H HH TT HT T.The result you're interested in is one of the four possibilities.So its probability is 1/4 = 25% .
20!/(18!*2!) * (1/2)^20 = 190/1048576 = 0.000181198... So less than 1 in 5000.
2 out of 3 i think
The probability is 1/2 because the second outcome has no affect on the first outcome.
If the coin is not biased, the answer is 0.375
For 3 coin flips: 87% chance of getting heads at least once 25% chance of getting heads twice 13% chance of getting heads all three times
The probability of landing on heads each time a fair coin is flipped, is 1/2.Assuming that the question was supposed to be:"What is the probability of landing on heads twice in a row?"To calculate compound probabilities like this, we first have to work out the probability of landing on heads each time, and then multiply these two probabilities to get a compound probability.1/2 x 1/2 = 1/4So the probability of landing on heads twice in a row = 1/4 (for a fair coin)