The sample space is HH, HT, TH, HH. Since the HH combination can occur once out of four times, the probability that if a coin is flipped twice the probability that both will be heads is 1/4 or 0.25.
The probability is 25%. The probability of flipping a coin once and getting heads is 50%. In your example, you get heads twice -- over the course of 2 flips. So there are two 50% probabilities that you need to combine to get the probability for getting two heads in two flips. So turn 50% into a decimal --> 0.5 Multiply the two 50% probabilities together --> 0.5 x 0.5 = 0.25. Therefore, 0.25 or 25% is the probability of flipping a coin twice and getting heads both times.
The answer depends on how many times the coin is tossed. The probability is zero if the coin is tossed only once! Making some assumptions and rewording your question as "If I toss a fair coin twice, what is the probability it comes up heads both times" then the probability of it being heads on any given toss is 0.5, and the probability of it being heads on both tosses is 0.5 x 0.5 = 0.25. If you toss it three times and want to know what the probability of it being heads exactly twice is, then the calculation is more complicated, but it comes out to 0.375.
The probability that both coins are heads is the probability of one coin landing heads multiplied by the probability of the second coin landing heads: (.5) * (.5) = .25 or (1/2) * (1/2) = 1/4
The probability of getting all heads or all tails in 5 flips of a coin is 1 in 16.The probability of getting a head or a tail on the first flip is 1 in 1. The probability of each of the following coins matching the first coin is 1 in 2. Simply multiply the five probabilities (1 in 1) (1 in 2) (1 in 2) (1 in 2) (1 in 2) and you get 1 in 16.It is true that the probability of getting all heads is 1 in 32, and the probability of getting all tails is also 1 in 32. Since the question asked the probability of both cases (all heads or all tails), the answer is 1 in 16.
We need to calculate two things:How many possible possible series of 10 coin flips are there? As we flip 10 times and each time we can have either heads or tails we have 2 by the power of ten possibilities, or a total of 1024 unique possible series.Now, how many of those series have exactly five heads and five tails? Lets assume we have ten "pre filipped" coins at hand - 5 tails and 5 heads. How many possible combinations are there. Well, if they were all different, you would have 10! (10 factorial = 10*9*8*7*6*5*4*3*2*1) possibilities.How ever, the 5 heads are identical and so are the 5 tails, so if I interchange the locations of two coins that are both heads for example I still get the exact same series. There are 5! possible heads combinations, and 5! tails combinations.Thus, the total number of unique combinations is 10!/(5!*5!) which happens to be 252.So, out of 1024 possible series, 252 contain exactly 5 heads.The probability thus is 252/1024=0.24609375 (roughly 25%)
The probability that 2 flipped coins both come up heads is 0.52 or 0.25
The probability is 25%. The probability of flipping a coin once and getting heads is 50%. In your example, you get heads twice -- over the course of 2 flips. So there are two 50% probabilities that you need to combine to get the probability for getting two heads in two flips. So turn 50% into a decimal --> 0.5 Multiply the two 50% probabilities together --> 0.5 x 0.5 = 0.25. Therefore, 0.25 or 25% is the probability of flipping a coin twice and getting heads both times.
The probability is 0.25.Look at it this way--if you toss a coin twice, there are four equally-probable outcomes:tails, tailstails, headsheads, tailsheads, headsSo the probability of heads twice in a row is one in four, or 25%.the chance of tossing heads is 1/2 (50%) The chance of tossing the next heads is 1/2 (50%) 1/2 x 1/2 = 1/4 (25%)
The answer depends on how many times the coin is tossed. The probability is zero if the coin is tossed only once! Making some assumptions and rewording your question as "If I toss a fair coin twice, what is the probability it comes up heads both times" then the probability of it being heads on any given toss is 0.5, and the probability of it being heads on both tosses is 0.5 x 0.5 = 0.25. If you toss it three times and want to know what the probability of it being heads exactly twice is, then the calculation is more complicated, but it comes out to 0.375.
1/2 x 1/2 = 1/4
The probability of a fair coin landing heads up is always 0.5, regardless of previous outcomes. Each coin flip is an independent event, so the outcome of the previous flips does not affect the outcome of the next flip. Therefore, the probability of the coin landing heads up on the next flip is still 0.5.
The probability that both coins are heads is the probability of one coin landing heads multiplied by the probability of the second coin landing heads: (.5) * (.5) = .25 or (1/2) * (1/2) = 1/4
If both tosses are fair, the probability of that outcome is one in four.
Both heads and tails are equally likely.
One in four. 1:4. The probability of getting heads when a fair coin is tossed is: P(H) = 1/2. The probability of getting heads on a second toss is: P(H) = 1/2, this result is independent of the result of the first toss. The probability of having both events happen (heads on the first and heads on the second toss) is: P(H1UH2) = (1/2)∙(1/2) = 1/4 = 0.25 = 0.25%
1/2
one fourth