answersLogoWhite

0


Best Answer

What is the rationale for defining 0 factorial to be 1?
Answer
The defining 0 factorial to be 1 is not a rationale.
"Why is zero factorial equal to one?" is a problem that one has to prove.
When 0 factorial to be 1 to be proved,
the defining 0 factorial to be 1 is unvaluable.
One has only one general primitive definition of a factorial number:
n! = n x (n-1) x (n-2) x (n-3) x ... x 2 x 1.
After that zero factorial denoted 0! is a problem that one has to accept
by convention 0!=1 as a part of definition.
One has to prove zero factorial to be one.
Only from the definition of a factorial number and by dividing both sides
by n one has: n!/n (n-1)! or (n-1)! = n!/n
when n=2 one has (2-1)! = 2!/2 or 1! = 2x1/2 or 1! = 1
when n=1 one has (1-1)! = 1!/1 or 0! = 1/1 or 0! = 1. =
This is a proof that zero factorial is equal to one to be known.
But a new proof is:
A Schema Proof Without Words
That Zero Factorial Is Equal To One.

... ... ...








Now the expression 0! = 1 is already a proof, not need a definition
nor a convention. So the defining 0 factorial to be 1 is unvaluable.
The proof "without words" above
that zero factorial is equal to one is a New that:
*One has not to accept by convention 0!=1 anymore.
*Zero factorial is not an empty product.
*This Schema leads to a Law of Factorial.
Note that the above schema is true but should not be used in a formal proof for 0!=1.
The problem arises when you simplify the pattern formed by this schema into a MacLauren Series, which is the mathematical basis for it in the first place. Upon doing so you arrive with,

. This representation illustrates that upon solving it you use 0!.
In proofs you cannot define something by using that which you are defining in the definition. (ie) 0! can't be used when solving a problem within a proof of 0!.
For clarification, the above series will represent the drawn out solution for the factorial of a number, i. (ie) 1×76 -6×66 +15×56 -20×46 +15×36 -6×26 +1×16 , where i=6.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the rationale for defining 0 factorial to be 1?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

How is 0 factorial equals 1?

The simple answer is that it is defined to be 1. But there is reason behind the decision.As you know, the factorial of a number (n) is equal to:n! = n * (n-1) * (n-2) ... * 1Another way of writing this is:n! = n * (n-1)!Suppose n=1:1! = 1 * 0!or1 = 1 * 0!or1 = 0!So by defining 0! as 1, formula involving factorials will work for all integers, including 0.


Why factorial of 0 equals 1?

Zero factorial is one because n! = n-1! X n. For example: 4! = (4-1) X 4. If zero factorial was zero, that would mean 1! =(1-1) X 1 = 0 X 1=0. Then if 1!=0, then even 999! would equal zero. Therefore, zero factorial equals 1.


Factorial notation in mathematics?

Definition of FactorialLet n be a positive integer. n factorial, written n!, is defined by n! = 1 * 2 * 3 * ... (n - 1) * nThe special case when n = 0, 0 factorial is given by: 0! = 1


Given 5 zeros using any mathematical operations can you make a total of 120?

AnswerAnswer: ( 0! + 0! + 0! + 0! + 0! ) ! = 120 Explanation: Here we have used operator called " factorial ". As you know that 0! = 1 so, = ( 0! + 0! + 0! + 0! + 0! ) ! = ( 1 + 1 + 1 + 1 + 1 ) ! = (5 )! = 120 : ( 0! + 0! + 0! + 0! + 0! ) ! = 120 Explanation: Here we have used operator called " factorial ". As you know that 0! = 1 so, = ( 0! + 0! + 0! + 0! + 0! ) ! = ( 1 + 1 + 1 + 1 + 1 ) ! = (5 )! = 120


What does an exclamation point mean as a math symbol?

An exclamation mark stands for factorial. For instance, if the number is 7!, then that would be 7x6x5x4x3x2x1. =================================================== Factorial means you multiply the integer written by every integer below it until you reach 1. Oddly enough, 0! = 1. There is also a 'factorial' function for non-integral values, called the Gamma function.

Related questions

Why 0 factorial is assumed to be 1?

That is related with the fact that 1 is the identity element (or neutral element) of multiplication - and factorials are defined as multiplications. Defining 0 factorial thus simplifies several formulae.


What is factorial of 0?

Factorial(0), or 0! = 1.


Why and how 0 factorial is 1?

This is related to the fact that 1 is the neutral element for multiplication. Defining the factorial this way makes some equations simpler, making it unnecessary to include additional conditions every time a rule is stated.


Zero factorial equal to one factorial then if we cancel the factorials on both side then the answer becomes zero equals one. do u accepts this?

0!=1! 1=1 The factorial of 0 is 1, not 0


How is 0 factorial equals 1?

The simple answer is that it is defined to be 1. But there is reason behind the decision.As you know, the factorial of a number (n) is equal to:n! = n * (n-1) * (n-2) ... * 1Another way of writing this is:n! = n * (n-1)!Suppose n=1:1! = 1 * 0!or1 = 1 * 0!or1 = 0!So by defining 0! as 1, formula involving factorials will work for all integers, including 0.


What is the value of 0 factorial?

Zero factorial, written as 0!, equals 1. This is a simple math equation.


Why factorial of 0 equals 1?

Zero factorial is one because n! = n-1! X n. For example: 4! = (4-1) X 4. If zero factorial was zero, that would mean 1! =(1-1) X 1 = 0 X 1=0. Then if 1!=0, then even 999! would equal zero. Therefore, zero factorial equals 1.


Factorial notation in mathematics?

Definition of FactorialLet n be a positive integer. n factorial, written n!, is defined by n! = 1 * 2 * 3 * ... (n - 1) * nThe special case when n = 0, 0 factorial is given by: 0! = 1


Is factorial of zero is 1?

yes, 0!=1 default.


What is the factorial of 0?

A recursive formula for the factorial is n! = n(n - 1)!. Rearranging gives (n - 1)! = n!/n, Substituting 'n - 1' as 0 -- i.e. n = 1 -- then 0! = 1!/1, which is 1/1 = 1.


Why we write 1 of the factorial of 0?

simply, any number divided by 0 is 0.


How to write a program to find the delimiter matching in stacks?

== == using recursions: unsigned int Factorial( unsigned int x) { if(x>0) { return ( x * Factorial(x-1)); } else { return(1); } } factorial: unsigned int Factorial( unsigned int x) { unsigned int u32fact = 1; if( x == 0) { return(1); } else { while(x>0) { u32fact = u32fact *x; x--; } } }