The derivative if a function is basically it's slope, or its rate of change.
An example is the function y = 4x - 6. This is a line with a slope of 4. The derivative is y' = 4.
Another example is the function y = 3x2. This is a parabola with a vertex at (0,0). Its derivative is y' = 6x. At x = 0, the slope of the parabola is 6*0, which is 0, since this is the vertex of the parabola. To the left, at x is -4 for example, the derivative (and therefore slope) is negative. To the right, at x = 5 for example, the derivative is positive. The farther away from the vertex, the greater the value of the derivative so the the slope of the function increases as you move away from the vertex (it gets steeper).
Chat with our AI personalities
All it means to take the second derivative is to take the derivative of a function twice. For example, say you start with the function y=x2+2x The first derivative would be 2x+2 But when you take the derivative the first derivative you get the second derivative which would be 2
Linear function:No variable appears in the function to any power other than 1.A periodic input produces no new frequencies in the output.The function's first derivative is a number; second derivative is zero.The graph of the function is a straight line.Non-linear function:A variable appears in the function to a power other than 1.A periodic function at the input produces new frequencies in the output.The function's first derivative is a function; second derivative is not zero.The graph of the function is not a straight line.
3
You take the derivative of the function. The derivative is another function that tells you the slope of the original function at any point. (If you don't know about derivatives already, you can learn the details on how to calculate in a calculus textbook. Or read the Wikipedia article for a brief introduction.) Once you have the derivative, you solve it for zero (derivative = 0). Any local maximum or minimum either has a derivative of zero, has no defined derivative, or is a border point (on the border of the interval you are considering). Now, as to the intervals where the function increase or decreases: Between any such maximum or minimum points, you take any random point and check whether the derivative is positive or negative. If it is positive, the function is increasing.
The relationship is a function if a vertical line intersects the graph at most once.