answersLogoWhite

0


Best Answer

Start with 1

Then multiply by the row (7) divided by (1)

1*7/1 = 7

Next drop the multiply by 1 and increase the divide by 1.

7 * 6 / 2 = 21

Keep doing this until you get back to 1

21 * 5 / 3 = 35

35 * 4 / 4 = 35

35 * 3 / 5 = 21

21 * 2 / 6 = 7

7 * 1 / 7 = 1

The line is

1 7 21 35 35 21 7 1

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the seventh row of Pascal's triangle?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is the 5th row on pascals triangle?

1,4,6,4,1


What is the sum of the 17th row of pascals triangle?

the sum is 65,528


What is the sum of the numbers in the 5th row of pascals triangle?

depends. If you start Pascals triangle with (1) or (1,1). The fifth row with then either be (1,4,6,4,1) or (1,5,10,10,5,1). The sums of which are respectively 16 and 32.


What is the sum of the 4 th row of pascals triangle?

The sum is 24 = 16


How is the pascal triangle and the binomial expansion related?

If the top row of Pascal's triangle is "1 1", then the nth row of Pascals triangle consists of the coefficients of x in the expansion of (1 + x)n.


What numbers are in the fifth row of pascals triangle?

1 5 10 10 5 1


What is the sum of the numbers in the seventh row of pascal s triangle?

64


What is the sum of fifth row of Pascals triangle?

The Fifth row of Pascal's triangle has 1,4,6,4,1. The sum is 16. Formula 2n-1 where n=5 Therefore 2n-1=25-1= 24 = 16.


What is row ten of pascals triangle?

1, 9, 36, 84, 126, 126, 84, 36, 9, 1


What is the sum of the 100th row of pascals triangle?

Sum of numbers in a nth row can be determined using the formula 2^n. For the 100th row, the sum of numbers is found to be 2^100=1.2676506x10^30.


Examples of Pascals triangle?

Pascal's triangle


How many odd numbers are in the 100th row of Pascals triangle?

The number of odd numbers in the Nth row of Pascal's triangle is equal to 2^n, where n is the number of 1's in the binary form of the N. In this case, 100 in binary is 1100100, so there are 8 odd numbers in the 100th row of Pascal's triangle.