........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
A fraction whose numerator (top number) and denominator (bottom number) are the same has a value of 1. The fraction, 5 over 5 (5/5), for example, is (bottom) 5 divided into (top) 5 = 1. 9/9 = 1, 7/7 = 1, and so on.
Its distance from zero, always a positive number. The absolute value of a positive number is that number. The absolute value of a negative number is its positive equivalent. Usually denoted by vertical bars |n| The absolute value of both 7 and -7 is 7 |-7| = 7 |7| = 7 * * * * * Minor error above: the absolute value of 0 is 0, so not "always a positive number".
7
In the number 700, the value of 7 is in the tens place. Therefore, the value of 7 in 700 is 70. This is because the place value of a digit in a number determines its actual value in the overall number.
The place value of the 7 in the number 0.708 is seven tenths.
A fraction whose numerator (top number) and denominator (bottom number) are the same has a value of 1. The fraction, 5 over 5 (5/5), for example, is (bottom) 5 divided into (top) 5 = 1. 9/9 = 1, 7/7 = 1, and so on.
It is 7/1 and equivalent fractions.
7/10, and or its equivalent fractions.
An example of a positive number without fractions or decimals is the whole number 7.
A lot too many to be listed cause one could be 7 and 1/billionth in fact that are an infinite number of fractions between 7 and 8, just like there are an infinite number of numbers, the fractions would just get smaller and smaller.
12/7 = 15/7
A fraction written with an integer numerator placed over a (nonzero) integer denominator is called a vulgar fraction. Vulgar fractions are also known as common fractions or simple fractions. Examples are 2/5 and 7/3. In those examples, the numerators are 2 and 7, the denominators are 5 and 3, all of which are integers. Simple/common/vulgar fractions are distinguished from compound fractions, from complex fractions, from mixed numerals, from decimal fractions, and from irrational fractions. Examples of fractions that are not common fractions are: * 0.75 -- decimal fraction * (3/4) / 2 -- complex fraction * (3/4) / (2/3) -- complex fraction * (1 1/2) / 2 -- complex fraction with mixed numeral in numerator * 3/4 of 5/7 -- compound fraction * 75% --- which equals 75/100, but written as a percent, it has neither a numerator nor a denominator * pi/4 -- irrational fraction. The distinction between common fractions and fractions that are not common is NOT the same as the distinction between proper fractions and improper fractions (which is explained below, but which is not needed to understand what a common fraction is). Common fractions can be either proper or improper. ------ If the absolute value of the numerator (the number on top) is less than the absolute value of the denominator (the number on the bottom) the fraction is called a PROPER fraction.. Examples are 2/3 and and -2/5. If the absolute value of the numerator is greater than the absolute value of the denominator (the number on the bottom) the fraction is called IMPROPER. Examples are 3/2 and and -5/2. Improper fractions can be converted to a mixed numeral, that is, an integer plus a fraction. For example 7/3 is equal to 2 1/3.
Common fractions such as 3/4 or 7/8 ... etc
Its distance from zero, always a positive number. The absolute value of a positive number is that number. The absolute value of a negative number is its positive equivalent. Usually denoted by vertical bars |n| The absolute value of both 7 and -7 is 7 |-7| = 7 |7| = 7 * * * * * Minor error above: the absolute value of 0 is 0, so not "always a positive number".
7000 (number value) - 7 (face value) = 6993.
7
No. The absolute value of -7 is 7.