-1
y=x2 and y=lnx are two examples of nonlinear equations.
What is the solution set for the equations x-y=2 and -x+y=2
Linear equations or inequalities describe points x y that lie on a circle.
42
The basic idea here is to look at both equations and solve for either x or y in one of the equations. Then plug the known value into the second equation and solve for the other variable.
y=x2 and y=lnx are two examples of nonlinear equations.
if y = xa then a = logxy
x + y = 43 x - y = 13 2x = 56 x = 28 28 + y = 43 y - 28 = 43 = 15 I'm sure you meant: y = 43 - 28 = 15
Here is an example:x + y = 0x + y = 1If you draw the graph for the two equations, you'll have two parallel lines.Here is an example:x + y = 0x + y = 1If you draw the graph for the two equations, you'll have two parallel lines.Here is an example:x + y = 0x + y = 1If you draw the graph for the two equations, you'll have two parallel lines.Here is an example:x + y = 0x + y = 1If you draw the graph for the two equations, you'll have two parallel lines.
If 2 equations are perpendicular to one another they can have different y-intercepts, depending on how they are situated on a (x,y) graph.
Without any equality signs they can't be considered to be equations.
1. Linear Equations y= mx + b (standard form of linear equation) 2. Quadratic Equations y= ax^2+bx+c 3. Exponential Equations y= ab^x 4. Cubic Equations y=ax^3+ bx^2+cx+d 5. Quartic Equations y= ax^4+ bx^3+ cx^2+ dx+ e 6. Equation of a circle (x-h)^2+(y-k)^2= r^2 7. Constant equation y= 9 (basically y has to equal a number for it to be a constant equation). 8. Proportional equations y=kx; y= k/x, etc.
Simultaneous equations are where you have multiple equations, often coupled with multiple variables. An example would be x+y=2, x-y=2. To solve for x and y, both equations would have to be used simultaneously.
If "equations-" is intended to be "equations", the answer is y = -2. If the first equation is meant to start with -3x, the answer is y = 0.2
It will be any of the equations that has the same slope of y = 5x+9 but with a different y intercept
The equations will have the same slope as y = 5x+9 but a different y intercept
x-y = 120 x+y = 150 add equations: 2x = 270 x = 135 y = 15