If it is <= or >=
you use a solid line when the inequality is less than or equal to or greater that or equal to the dotted line is for less than or greater than
A dashed line is used when the equality is equal to and less than/more than. (≤, ≥) A solid line is used when the inequality is just less than/more than. (<, >)
Actually, a linear inequality, such as y > 2x - 1, -3x + 2y < 9, or y > 2 is shaded, not a linear equation.The shaded region on the graph implies that any number in the shaded region is a solution to the inequality. For example when graphing y > 2, all values greater than 2 are solutions to the inequality; therefore, the area above the broken line at y>2 is shaded. Note that when graphing ">" or "=" or "
if you have y <= f(x), then graph the function y = f(x) with a solid line, then shade everything below that graph.
If the inequality includes 'or equal' then use a solid dot [the value is included]. If it doesn't use 'or equal' then use the open dot.
If the points that are ON the line satisfy the inequality then the line should be solid. Otherwise it should be dotted. Another way of putting that is, if the inequality is given in terms of ≤ or ≥, then use a solid line. If they are < or > use a dotted line.
you use a solid line when the inequality is less than or equal to or greater that or equal to the dotted line is for less than or greater than
When graphing a linear inequality, the first step is to replace the inequality symbol with an equal sign to graph the corresponding linear equation. This creates a boundary line, which can be solid (for ≤ or ≥) or dashed (for < or >) depending on whether the points on the line are included in the solution set. After graphing the line, you then determine which side of the line represents the solution set by testing a point (usually the origin if it's not on the line) to see if it satisfies the original inequality. Finally, shade the appropriate region to indicate the solutions to the inequality.
A dashed line is used when the equality is equal to and less than/more than. (≤, ≥) A solid line is used when the inequality is just less than/more than. (<, >)
The line that includes whatever variables are included in the equation.
Actually, a linear inequality, such as y > 2x - 1, -3x + 2y < 9, or y > 2 is shaded, not a linear equation.The shaded region on the graph implies that any number in the shaded region is a solution to the inequality. For example when graphing y > 2, all values greater than 2 are solutions to the inequality; therefore, the area above the broken line at y>2 is shaded. Note that when graphing ">" or "=" or "
A dotted line in a graph of an inequality indicates that the boundary line is not included in the solution set. This typically occurs with inequalities using "<" or ">", meaning that points on the dotted line do not satisfy the inequality. In contrast, a solid line would indicate that points on the line are included in the solution set, as seen with "<=" or ">=".
To graph linear inequalities, you first identify the boundary line by rewriting the inequality in slope-intercept form (y = mx + b) and plotting the corresponding linear equation. If the inequality is strict (e.g., < or >), you use a dashed line to indicate that points on the line are not included. For non-strict inequalities (e.g., ≤ or ≥), a solid line is used. Finally, you shade the appropriate region of the graph to represent the solutions that satisfy the inequality, based on whether the inequality is greater than or less than.
if you have y <= f(x), then graph the function y = f(x) with a solid line, then shade everything below that graph.
It is standard procedure to shade the area where the Inequality does NOT apply, leaving the unshaded area to show where the Inequality is valid. Choosing a simple illustration, the Inequality y > 6 would be graphically represented by a dotted line passing though y = 6 and parallel to the x-axis. The area below this line would be shaded as this represents the zone where y < 6. Note : A broken/dotted line is used to illustrate the boundary where a true Inequality applies (e.g. < or >). A solid line is used where the Inequality also includes an equals sign (e.g. ≤ less than or equal to, or ≥ greater than or equal to ).
Yes, graphed linear inequalities should be shaded to represent the solution set. The shading indicates all the points that satisfy the inequality. For example, if the inequality is (y > mx + b), the area above the line is shaded. If the inequality includes "less than or equal to" or "greater than or equal to," the line is typically solid; otherwise, it is dashed.
The graph of an inequality is a region, not a line.