It appears that a number of -79 is missing in the sequence and so if you meant -58 -65 -72 -79 -86 then the nth term is -7n-51 which makes 6th term in the sequence -93
The 90th term of the arithmetic sequence is 461
The answer depends on what the explicit rule is!
From any term after the first, subtract the preceding term.
The difference between successive terms in an arithmetic sequence is a constant. Denote this by r. Suppose the first term is a. Then the nth term, of the sequence is given by t(n) = (a-r) + n*r or a + (n-1)*r
The first step is to find the sequence rule. The sequence could be arithmetic. quadratic, geometric, recursively defined or any one of many special sequences. The sequence rule will give you the value of the nth term in terms of its position, n. Then simply substitute the next value of n in the rule.
The 90th term of the arithmetic sequence is 461
The nth term of an arithmetic sequence = a + [(n - 1) X d]
The answer depends on what the explicit rule is!
i dont get it
Nth number in an arithmetic series equals 'a + nd', where 'a' is the first number, 'n' signifies the Nth number and d is the amount by which each term in the series is incremented. For the 5th term it would be a + 5d
From any term after the first, subtract the preceding term.
The difference between successive terms in an arithmetic sequence is a constant. Denote this by r. Suppose the first term is a. Then the nth term, of the sequence is given by t(n) = (a-r) + n*r or a + (n-1)*r
The first step is to find the sequence rule. The sequence could be arithmetic. quadratic, geometric, recursively defined or any one of many special sequences. The sequence rule will give you the value of the nth term in terms of its position, n. Then simply substitute the next value of n in the rule.
It is a sequence of numbers which is called an arithmetic, or linear, sequence.
It is an arithmetic sequence if you can establish that the difference between any term in the sequence and the one before it has a constant value.
To find each term in a pattern, identify the relationship between consecutive terms, which can often be expressed as a mathematical rule or formula. This could involve addition, subtraction, multiplication, or division, or a combination of these operations. For example, if each term increases by a constant value, the rule may be an arithmetic sequence; if each term is multiplied by a constant factor, it may be a geometric sequence. Once the rule is determined, it can be used to calculate any term in the pattern.
The 19th term of the sequence is 16.