The standard deviation (SD) is a measure of spread so small sd = small spread. So the above is true for any distribution, not just the Normal.
A researcher wants to go from a normal distribution to a standard normal distribution because the latter allows him/her to make the correspondence between the area and the probability. Though events in the real world rarely follow a standard normal distribution, z-scores are convenient calculations of area that can be used with any/all normal distributions. Meaning: once a researcher has translated raw data into a standard normal distribution (z-score), he/she can then find its associated probability.
In general, you cannot. If the distribution can be assumed to be Gaussian [Normal] then you could use z-scores.
Between z = -1.16 and z = 1.16 is approx 0.7540 (or 75.40 %). Which means ¾ (0.75 or 75%) of the normal distribution lies between approximately -1.16 and 1.16 standard deviations from the mean.
2
100%. And that is true for any probability distribution.
Approx 84%.
z-scores are distributed according to the standard normal distribution. That is, with the parameters: mean 0 and variance 1.
For a normal probability distribution to be considered a standard normal probability distribution, it must have a mean of 0 and a standard deviation of 1. This standardization allows for the use of z-scores, which represent the number of standard deviations a data point is from the mean. Any normal distribution can be transformed into a standard normal distribution through the process of standardization.
99.7% of scores fall within -3 and plus 3 standard deviations around the mean in a normal distribution.
None.z-scores are linear transformations that are used to convert an "ordinary" Normal variable - with mean, m, and standard deviation, s, to a normal variable with mean = 0 and st dev = 1 : the Standard Normal distribution.
It is 68.3%
0.13
A researcher wants to go from a normal distribution to a standard normal distribution because the latter allows him/her to make the correspondence between the area and the probability. Though events in the real world rarely follow a standard normal distribution, z-scores are convenient calculations of area that can be used with any/all normal distributions. Meaning: once a researcher has translated raw data into a standard normal distribution (z-score), he/she can then find its associated probability.
To find the proportion of a normal distribution corresponding to z-scores greater than +1.04, you can use the standard normal distribution table or a calculator. The area to the left of z = 1.04 is approximately 0.8508. Therefore, the proportion of the distribution that corresponds to z-scores greater than +1.04 is 1 - 0.8508, which is approximately 0.1492, or 14.92%.
When the normal curve is plotted using standard deviation units, each with a value of 1.00, it is referred to as the standard normal distribution. In this distribution, the mean is 0 and the standard deviation is 1, allowing for easy comparison of different data sets by transforming them into z-scores. The standard normal distribution is often represented by the symbol Z.
Assuming a normal distribution 68 % of the data samples will be with 1 standard deviation of the mean.
The cumulative probability up to the mean plus 1 standard deviation for a Normal distribution - not any distribution - is 84%. The reference is any table (or on-line version) of z-scores for the standard normal distribution.