Assuming a normal distribution 68 % of the data samples will be with 1 standard deviation of the mean.
It is 68.3%
68.2%
For data sets having a normal distribution, the following properties depend on the mean and the standard deviation. This is known as the Empirical rule. About 68% of all values fall within 1 standard deviation of the mean About 95% of all values fall within 2 standard deviation of the mean About 99.7% of all values fall within 3 standard deviation of the mean. So given any value and given the mean and standard deviation, one can say right away where that value is compared to 60, 95 and 99 percent of the other values. The mean of the any distribution is a measure of centrality, but in case of the normal distribution, it is equal to the mode and median of the distribtion. The standard deviation is a measure of data dispersion or variability. In the case of the normal distribution, the mean and the standard deviation are the two parameters of the distribution, therefore they completely define the distribution. See: http://en.wikipedia.org/wiki/Normal_distribution
99.7% of scores fall within -3 and plus 3 standard deviations around the mean in a normal distribution.
The purpose of obtaining the standard deviation is to measure the dispersion data has from the mean. Data sets can be widely dispersed, or narrowly dispersed. The standard deviation measures the degree of dispersion. Each standard deviation has a percentage probability that a single datum will fall within that distance from the mean. One standard deviation of a normal distribution contains 66.67% of all data in a particular data set. Therefore, any single datum in the data has a 66.67% chance of falling within one standard deviation from the mean. 95% of all data in the data set will fall within two standard deviations of the mean. So, how does this help us in the real world? Well, I will use the world of finance/investments to illustrate real world application. In finance, we use the standard deviation and variance to measure risk of a particular investment. Assume the mean is 15%. That would indicate that we expect to earn a 15% return on an investment. However, we never earn what we expect, so we use the standard deviation to measure the likelihood the expected return will fall away from that expected return (or mean). If the standard deviation is 2%, we have a 66.67% chance the return will actually be between 13% and 17%. We expect a 95% chance that the return on the investment will yield an 11% to 19% return. The larger the standard deviation, the greater the risk involved with a particular investment. That is a real world example of how we use the standard deviation to measure risk, and expected return on an investment.
68% of the scores are within 1 standard deviation of the mean -80, 120 95% of the scores are within 2 standard deviations of the mean -60, 140 99.7% of the scores are within 3 standard deviations of the mean -40, 180
It is 68.3%
The standard deviation of male height in a population is a measure of how spread out the heights are from the average height of males in that population. It helps to understand the variability in male heights within the group.
68.2%
In a normal distribution, approximately 95% of the population falls within 2 standard deviations of the mean. This is known as the 95% rule or the empirical rule. The empirical rule states that within one standard deviation of the mean, about 68% of the population falls, and within two standard deviations, about 95% of the population falls.
Within 1 stdev of the mean - between 40 and 60.
Approximately 6.68% of the population falls within one standard deviation above the mean IQ score of 100, which includes an IQ of 128.
The standard deviation provides in indication of what proportion of the entire distribution of the sample falls within a certain distance from the mean or average for that sample. If your data falls on a normal (or bell shaped) distribution, a SD of 1 indicates that about 68% of your data points (scores or whatever else) fall within 1 point (plus or minus) of the average (mean) of the data, and 95% fall within 2 points.
For data sets having a normal, bell-shaped distribution, the following properties apply: About 68% of all values fall within 1 standard deviation of the mean About 95% of all values fall within 2 standard deviation of the mean About 99.7% of all values fall within 3 standard deviation of the mean.
The reason the standard deviation of a distribution of means is smaller than the standard deviation of the population from which it was derived is actually quite logical. Keep in mind that standard deviation is the square root of variance. Variance is quite simply an expression of the variation among values in the population. Each of the means within the distribution of means is comprised of a sample of values taken randomly from the population. While it is possible for a random sample of multiple values to have come from one extreme or the other of the population distribution, it is unlikely. Generally, each sample will consist of some values on the lower end of the distribution, some from the higher end, and most from near the middle. In most cases, the values (both extremes and middle values) within each sample will balance out and average out to somewhere toward the middle of the population distribution. So the mean of each sample is likely to be close to the mean of the population and unlikely to be extreme in either direction. Because the majority of the means in a distribution of means will fall closer to the population mean than many of the individual values in the population, there is less variation among the distribution of means than among individual values in the population from which it was derived. Because there is less variation, the variance is lower, and thus, the square root of the variance - the standard deviation of the distribution of means - is less than the standard deviation of the population from which it was derived.
The Empirical Rule states that 68% of the data falls within 1 standard deviation from the mean. Since 1000 data values are given, take .68*1000 and you have 680 values are within 1 standard deviation from the mean.
No. Standard deviation is not an absolute value. The standard deviation is often written as a single positive value (magnitude), but it is really a binomial, and it equals both the positive and negative of the given magnitude. For example, if you are told that for a population the SD is 5.0, it really means +5.0 and -5.0 from the population mean. It defines a region within the distribution, starting at the lower magnitude (-5.0) increasing to zero (the mean), and another region starting at zero (the mean) and increasing up to the upper magnitude (+5.0). Both regions together define the (continuous) region of standard deviation from the mean value.