true
Hyperbolic geometry is a beautiful example of non-Euclidean geometry. One feature of Euclidean geometry is the parallel postulate. This says that give a line and a point not on that line, there is exactly one line going through the point which is parallel to the line. (That is to say, that does NOT intersect the line) This does not hold in the hyperbolic plane where we can have many lines through a point parallel to a line. But then we must wonder, what do lines look like in the hyperbolic plane? Lines in the hyperbolic plane will either appear as lines perpendicular to the edge of the half-plane or as circles whose centers lie on the edge of the half-plane
It could be a hyperbolic graph, but it does depend on what is in the numerator.
False
infinitely many
Hyperbolic functions can be used to describe the position that heavy cable assumes when strung between two supports.
The basic ones are: sine, cosine, tangent, cosecant, secant, cotangent; Less common ones are: arcsine, arccosine, arctangent, arccosecant, arcsecant, arccotangent; hyperbolic sine, hyperbolic cosine, hyperbolic tangent, hyperbolic cosecant, hyperbolic secant, hyperbolic cotangent; hyperbolic arcsine, hyperbolic arccosine, hyperbolic arctangent, hyperbolic arccosecant, hyperbolic arcsecant, hyperbolic arccotangent.
The inverses of hyperbolic function are the area hyperbolic functions. They are called area functions becasue they compute the area of a sector of the unit hyperbola x2 − y2 = 1 This is similar to the inverse trig functions which correspond to arclength of a sector on the unit circle
Pringles
The hyperbolic functions are related to a hyperbola is the same way the the circular functions are related to a circle. So, while the points with coordinates [cos(t), sin(t)] generate the unit circle, their hyperbolic counterparts, [cosh(t) , sinh(t)] generate the right half of the equilateral hyperbola. Other circular functions (tan, sec, cosec and cot) also have their hyperbolic counterparts, as do the inverse functions. An alternative, equivalent pair of definitions is: cosh(x) = (ex + e-x)/2 and sinh(x) = (ex - e-x)/2
There are three types of trigonometric functions, they are: 1- Plane Trigonometric Functions 2- Inverse Trigonometric Functions and 3- Hyperbolic Trigonometric Functions
If f(x)=y, then the inverse function solves for y when x=f(y). You may have to restrict the domain for the inverse function to be a function. Use this concept when finding the inverse of hyperbolic functions.
If you hold a chain at both ends and let it hang loosely, the path of the chain follows the path of the hyperbolic cosine. (This is also the shape of the St. Lois Arch.) Also, the integrals of many useful functions. For example, if an object is falling in a constant gravitational field with air resistance, the velocity of the object as a function of time involves the inverse hyperbolic tangent.
The equation of a hyperbolic function is y = sinh(x) or y = cosh(x), where sinh(x) represents the hyperbolic sine function and cosh(x) represents the hyperbolic cosine function. Hyperbolic functions are similar to trigonometric functions but are defined in terms of exponentials.
Frederick Eugene Pernot has written: 'Abridged tables of hyperbolic functions'
There are infinitely many types of functions. For example: Discrete function, Continuous functions, Differentiable functions, Monotonic functions, Odd functions, Even functions, Invertible functions. Another way of classifying them gives: Logarithmic functions, Inverse functions, Algebraic functions, Trigonometric functions, Exponential functions, Hyperbolic functions.
An arc-hyperbolic function is an inverse hyperbolic function.