If the components are in the i and j directions, for example, then if the vector is mi + nj then the coefficients m and n can be used to find the magnitude and direction.
The magnitude is the hypotenuse of a right triangle with legs m and n, so it is sqrt(m² + n²).
Chat with our AI personalities
The angle between the rectangular components of a vector can be calculated using trigonometry. You can use the arctangent function to find the angle. For example, if you have a vector with components (x, y), the angle would be arctan(y/x).
if you have a vector that moves diagonally.. it's rectangular components are basically how much it moves vertically and how much it moves horizontally
A vector can be expressed in polar components by breaking it down into its magnitude and direction. The magnitude is the length of the vector, and the direction is given by an angle with respect to a reference axis, typically the positive x-axis. This can be represented as (magnitude, angle).
This isn't a simple yes or no question.An angle is a scalar quantity, and a vector is a ... well, vector... quantity. However, there is a relation between the two, and in two dimensions (for example) it's possible to specify a vector in terms of its magnitude and a "vector angle"; that is, the angle it makes with an axis (generally the x-axis, by convention) of the coordinate system.Sometimes the word "vector" is used in a non-mathematical sense to simply mean a direction, not a magnitude. (One example would be in navigation, where the "vector" to another object is the direction it's in; range is treated separately, though in the mathematical sense vector encompasses both direction and range.) In this case it can be more or less equivalent to an angle.
Starting from a location with a position vector, the direction to the keyword can be determined by calculating the angle between the position vector and the vector pointing towards the keyword.
No, the magnitude of a vector is the length of the vector, while the angle formed by a vector is the direction in which the vector points relative to a reference axis. These are separate properties of a vector that describe different aspects of its characteristics.
To find the direction of a vector, you can use trigonometry. First, calculate the angle the vector makes with the positive x-axis. This angle is called the direction angle. You can use the arctangent function to find this angle. The direction of the vector is then given by the direction angle measured counterclockwise from the positive x-axis.