Best Answer

If that's 25%, it will fill in four hours. If that's 2/5 (40%), it will fill in 2.5 hours.

User Avatar

Wiki User

7y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

7y ago

It will take 4 hours.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: A pipe that fills 25 of a tank in 1 hour will fill in completely in hours?
Write your answer...
Still have questions?
magnify glass
Related questions

A large pipe can fill a pool in 9hrs if a large and a small pipe can fill this pool in 6 hrs when used togheter how long would it take the smaller pipe to fill the pool alone?

large fills 1/9 per hour, large and small fill 1/6 per hour so small fills 1/6 - 1/9 per hour, ie 1/18, so small alone would take 18 hours.

A tank can either be filled in 12 hours by Pipe A or in 8 hours by Pipe B How long will it take both pipes woorking together to fill the tank?

Pipe A fills 1/12 of the tank per hour, and Pipe B fills 1/8 of the tank per hour. Together, they fill 1/12+1/8 of the tank per hour. 1/12+1/8=(1*8)/(12*8)+(1*12)/(12*8)=(8+12)/(12*8)=20/96=5/24 of the tank per hour So, it would take 1/(5/24)=24/5 = 4.8 hours to fill the tank with both pipes.

A pool can be filled by one pipe in 7 hours and by a second pipe in 2 hours How long will it take using both pipes to fill the pool?

In one hour first pipe fills 1/7th of pool, other pipe fills one-half, so together in one hour they fill 1/7 + 1/2 ie 9/14 so would take 14/9 hours (93 and a third minutes) to fill the pool. ie 1 hr 33 min 20 sec

An inlet pipe on a swimming pool can be used to fill the pool in 18 hours The drain pipe can be used to empty the pool in 20 hours If the pool is one-third filled and the inlet pipe drain are opened?

Hose A fills 1/3 of the pool per hour, hose B fills 1/4 of the pool per hour, and hose C fills 1/12 of the pool per hour. Conveniently, these easily convey to 4/12, 3/12, and 1/12. So all three hoses together fill 4/12 + 3/12 + 1/12 = 8/12 (or 2/3) or of the pool per hour. Therefore it takes one and one-half hours to fill the pool all the way. At the end of hour 1 the pool will be 2/3 of the way full, and since there's only 1/3 of the pool left to fill and our hoses can fill 2/3 of it per hour, we only need to run them for half-an-hour to get the last 1/3.

A winery has a vat with two valves The inlet valve can fill the cat in 6 hours The outlet can empyty it in 10 hours How long with it take to fill the vat if both valves are left open?

The inlet valve fills 1/6th of the vat in an hour.The outlet valve drains 1/10th of the vat in an hour.When they are both open, (1/6th - 1/10th) of the vat fills in an hour.(1/6 - 1/10) = (5/30 - 3/30) = 2/30 = 1/15th fills in one hour.So with both valves open, it takes 15 hours to fill the vat.

A swimming pool holds 21000 gallons of water it takes 28 hours to fill the pool with a garden hose what is the unit rate at which the hose fills the pool?

12 hours. 14,000 divided by 20= 720 720 divided by 60 = 12

One pipe can fill the tank in 2 hours and another pipe can fill a tank in 5 hours. how many hours will it take if both pipes are open at the same time?

Pipe 1: 0,5 tanks per hour (2 hours to fill)Pipe 2: 0,2 tanks per hour (5 hours to fill)If we let X be the time in hours to fill the tank:0,5 * X + 0,2 * X = 1 (one tank filling)0,7 * X = 1X = 1 ÷ 0,7 = 1.428571429... ≈ 1.43 hours or almost 1 hour 26 minutes

How do you calculate rate to fill pool?

Pool capacity in gallons divided by fill time in hours equals fill rate in gallons per hour (gal / hr = gal/hr).

If it takes 1 hour to fill a 400 gallon tank how long will it take to fill a 600 gallon tank?

1.5 hours if the rate of flow is constant.

How many hours will it take to fill a 36000 gallon pool?

Depends on water pressure and how many hoses you use. Overnight

The time it takes to fill a tank varies directly with the volume of the tank If it takes 1 hour to fill a 400 gallon tank how long will it take to fill a 600 gallon tank?

1.5 hours

An empty swimming pool can be filled to capacity through an innlet pipe in 3 hours and it can be completely drained by a drained pipe in 6 hours if both pipe are fully open at the same time in how man?

Assuming the flow rate is constant (in a real system, this probably will not be the case, at least for the drain; it probably drains faster when nearly full than when nearly empty), then for convenience sake let's say the pool holds six units of water. It fills at 2 units per hour and drains at 1 unit per hour. If both pipes are open, the net gain is 1 unit per hour, so it will fill in six hours (and then start overflowing unless both pipes are shut off).