You can find the definition of the function, a statement about the function's values, and an inductive proof, in the Wikipedia article "Carmichael function", which I won't repeat here.
Chat with our AI personalities
The browser used by this site is hopelessly inadequate for the purpose. You are far better off at the Wikipedia site: https://en.wikipedia.org/wiki/Carmichael_function
I posted this question myself to be honest because i wasn't sure... but the horizontal line test was made to prove whether the function/graph was an one-to-one function
How would you prove algebraically that the function: f(x)= |x-2|, x<= 2 , is one to one?
Assuming the function is linear, the direction of the function can be determined by the coefficient's sign:[y = mx + b]Where m is the coefficient of x, if m is negative, then the function is increasing. If m is positive, the function is decreasing (this relationship is rather complicated and requires advanced calculus to prove).
The Mean Value Theorem states that the function must be continuous and differentiable over the whole x-interval and there must be a point in the derivative where you plug in a number and get 0 out.(f'(c)=0). If a function is constant then the derivative of that function is 0 => any number you put in, you will get 0 out. Thus, using the MVT we deduced that the slope must be zero and since the f(x) is a constant function then the slope IS 0.
if EB=EC and AB=DC prove <A=<D