math and algebra
The conjugate of a complex number is the same number (but the imaginary part has opposite sign). e.g.: A=[5i - 2] --> A*=[-5i - 2] Graphically, as you change the sign, you also change the direction of that vector. The conjugate it's used to solve operations with complex numbers. When a complex number is multiplied by its conjugate, the product is a real number. e.g.: 5/(2-i) --> then you multiply and divide by the complex conjugate (2+i) and get the following: 5(2+i)/(2-i)(2+i)=(10+5i)/5=2+i
solve it with a calculater
you cant solve that YOU FREAK!
I assume that "I" is a variable2+5i+6+3i7i+6+3i10i+616i is the answer
1/(2 + 5i) (multiply both the numerator and the denominator by 2 - 5i)= 1(2 - 5i)/(2 + 5i)(2 - 5i)= (2 - 5i)/(4 - 25i2) (substitute -1 for i2)= (2 - 5i)/(4 + 25)= (2 - 5i)/29= 2/29 - (5/29)i
math and algebra
The conjugate of 2 + 3i is 2 - 3i, and the conjugate of 2 - 5i is 2 + 5i.
Let a + bi be the reciprocal. So (a + bi)(2 - 5i) = 1 (a + bi)(2 - 5i) = 2a - 5ai + 2bi + 5b = (2a + 5b) + (2b - 5a)i Therefore 2a + 5b = 1 and 2b - 5a = 0. Solving the simultaneous equations, we find that a = 2/29 and b = 5/29. So the reciprocal of 2 - 5i is 2/29 + 5i/29.
The conjugate of a complex number is the same number (but the imaginary part has opposite sign). e.g.: A=[5i - 2] --> A*=[-5i - 2] Graphically, as you change the sign, you also change the direction of that vector. The conjugate it's used to solve operations with complex numbers. When a complex number is multiplied by its conjugate, the product is a real number. e.g.: 5/(2-i) --> then you multiply and divide by the complex conjugate (2+i) and get the following: 5(2+i)/(2-i)(2+i)=(10+5i)/5=2+i
solve it with a calculater
1/(3+5i)=(3-5i)/((3+5i)(3-5i))=(3-5i)/(9+25)=(3-5i)/34
5, -5, 5i, -5i, 5i^2, and many others... If you're asking this question, chances are it is either 5 or negative 5.
you cant solve that YOU FREAK!
y = 2
0 + 5i Its complex conjugate is 0 - 5i
When adding and subtracting complex numbers, you can treat the "i" as any variable. For example, 5i + 3i = 8i, 5i -3i = 2i, etc.; (2 + 5i) - (3 - 3i) = (2 - 3) + (5 + 3)i = -1 + 8i.