Chat with our AI personalities
0.4
5√3 + 5i, -5√3 + 5i, -10i
The conjugate of a complex number is the same number (but the imaginary part has opposite sign). e.g.: A=[5i - 2] --> A*=[-5i - 2] Graphically, as you change the sign, you also change the direction of that vector. The conjugate it's used to solve operations with complex numbers. When a complex number is multiplied by its conjugate, the product is a real number. e.g.: 5/(2-i) --> then you multiply and divide by the complex conjugate (2+i) and get the following: 5(2+i)/(2-i)(2+i)=(10+5i)/5=2+i
The complex conjugate of a+bi is a-bi. This is written as z* where z is a complex number. ex. z = a+bi z* = a-bi r = 3+12i r* = 3-12i s = 5-6i s* = 5+6i t = -3+7i = 7i-3 t* = -3-7i = -(3+7i)
CCXXVI is 226C = 100 & there are 2 of them.X = 10 & there are 2 of them also.V = 5I = 1200 + 20 + 5 + 1 = 226