bi- = 2 Binomials have two terms.
FOIL. First terms Outer terms Inner terms Last terms
Depends on the kind of binomials. Case 1: If both binomials have different terms, then use the distribution property. Each term of one binomial will multiply both terms of the other binomial. After distribution, combine like terms, and it's done. Case 2: If both binomials have exactly the same terms, then work as in the 1st case, or use the formula for suaring a binomial, (a ± b)2 = a2 ± 2ab + b2. Case 3: If both binomials have terms that only differ in sign, then work as in the 1st case, or use the formula for the sum and the difference of the two terms, (a - b)(a + b) = a2 - b2.
Depends on the kind of binomials. Case 1: If both binomials have different terms, then use the distribution property. Each term of one binomial will multiply both terms of the other binomial. After distribution, combine like terms, and it's done. Case 2: If both binomials have exactly the same terms, then work as in the 1st case, or use the formula for suaring a binomial, (a ± b)2 = a2 ± 2ab + b2. Case 3: If both binomials have terms that only differ in sign, then work as in the 1st case, or use the formula for the sum and the difference of the two terms, (a - b)(a + b) = a2 - b2.
Yes, although we generally refer to polynomials with two terms, like this one, as binomials.
bi- = 2 Binomials have two terms.
You use the FOIL method. First terms Outer terms Inner terms Last terms.
The ones that are the sum or the difference of two terms.
Combining like terms.
Depends on the kind of binomials. Case 1: If both binomials have different terms, then use the distribution property. Each term of one binomial will multiply both terms of the other binomial. After distribution, combine like terms, and it's done. Case 2: If both binomials have exactly the same terms, then work as in the 1st case, or use the formula for suaring a binomial, (a ± b)2 = a2 ± 2ab + b2. Case 3: If both binomials have terms that only differ in sign, then work as in the 1st case, or use the formula for the sum and the difference of the two terms, (a - b)(a + b) = a2 - b2.
FOIL. First terms Outer terms Inner terms Last terms
Depends on the kind of binomials. Case 1: If both binomials have different terms, then use the distribution property. Each term of one binomial will multiply both terms of the other binomial. After distribution, combine like terms, and it's done. Case 2: If both binomials have exactly the same terms, then work as in the 1st case, or use the formula for suaring a binomial, (a ± b)2 = a2 ± 2ab + b2. Case 3: If both binomials have terms that only differ in sign, then work as in the 1st case, or use the formula for the sum and the difference of the two terms, (a - b)(a + b) = a2 - b2.
4 times
Binomials are algebraic expressions of the sum or difference of two terms. Some binomials can be broken down into factors. One example of this is the "difference between two squares" where the binomial a2 - b2 can be factored into (a - b)(a + b)
Yes, although we generally refer to polynomials with two terms, like this one, as binomials.
Two terms is a binomial. More than two terms is a polynomial. Binomials are not part of the set of polynomials.
Binomials are algebraic expressions of the sum or difference of two terms. Some binomials can be broken down into factors. One example of this is the "difference between two squares" where the binomial a2 - b2 can be factored into (a - b)(a + b)