answersLogoWhite

0

Unfortunately, limitations of the browser used by Answers.com means that we cannot see most symbols. It is therefore impossible to give a proper answer to your question. Please resubmit your question spelling out the symbols as "plus", "minus", "equals", "squared", "cubed" etc.

Unfortunately, limitations of the browser used by Answers.com means that we cannot see most symbols. It is therefore impossible to give a proper answer to your question. Please resubmit your question spelling out the symbols as "plus", "minus", "equals", "squared", "cubed" etc.

Unfortunately, limitations of the browser used by Answers.com means that we cannot see most symbols. It is therefore impossible to give a proper answer to your question. Please resubmit your question spelling out the symbols as "plus", "minus", "equals", "squared", "cubed" etc.

Unfortunately, limitations of the browser used by Answers.com means that we cannot see most symbols. It is therefore impossible to give a proper answer to your question. Please resubmit your question spelling out the symbols as "plus", "minus", "equals", "squared", "cubed" etc.

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

What are the integer solutions of the inequality x 3?

The inequality ( x^3 < 3 ) can be solved by finding the integer values of ( x ) that satisfy this condition. To do this, we first note that ( x^3 = 3 ) has a real solution at ( x = \sqrt[3]{3} \approx 1.442 ). The integer solutions for the inequality ( x^3 < 3 ) are thus ( x = -2, -1, 0, 1 ). Therefore, the integer solutions are ( x \in {-2, -1, 0, 1} ).


What are Solution of an inequality?

The solution of an inequality is a set of values that satisfy the inequality condition. For example, in the inequality ( x > 3 ), the solution includes all numbers greater than 3, such as 4, 5, or any number approaching infinity. Solutions can be expressed as intervals, such as ( (3, \infty) ), or as a number line representation. These solutions help identify the range of values that make the inequality true.


What are 3 possible solutions for the inequality?

To provide possible solutions for the inequality, I would need the specific inequality in question. However, generally speaking, solutions can include finding values that satisfy the inequality by isolating the variable, testing values within the identified intervals, or using graphing methods to visualize where the inequality holds true. If you have a specific inequality in mind, please share it for tailored solutions.


What are 3 solutions for inequality for y9?

Three solutions for inequality in Year 9 math include: Graphing: Plotting the inequality on a graph helps visualize the solution set, showing all the points that satisfy the inequality. Substitution: Testing specific values in the inequality can help determine if they satisfy the condition, providing a practical way to find solutions. Algebraic Manipulation: Rearranging the inequality by isolating the variable can simplify the problem and lead directly to the solution set.


What is the least possible integer solution of the inequality 4.103x19.868?

To find the least possible integer solution of the inequality (4.10 < 3x < 19.86), we first solve for (x) by dividing the entire inequality by 3. This gives us (1.3667 < x < 6.62). The least integer greater than (1.3667) is (2). Therefore, the least possible integer solution is (2).

Related Questions

Which lists all the integer solutions of the inequality of 3?

The question cannot be answered since it contains no inequality.


What are at least five inequality solutions to x-3?

x - 3 is not an inequality.


What are Solution of an inequality?

The solution of an inequality is a set of values that satisfy the inequality condition. For example, in the inequality ( x > 3 ), the solution includes all numbers greater than 3, such as 4, 5, or any number approaching infinity. Solutions can be expressed as intervals, such as ( (3, \infty) ), or as a number line representation. These solutions help identify the range of values that make the inequality true.


What are 3 possible solutions for the inequality?

To provide possible solutions for the inequality, I would need the specific inequality in question. However, generally speaking, solutions can include finding values that satisfy the inequality by isolating the variable, testing values within the identified intervals, or using graphing methods to visualize where the inequality holds true. If you have a specific inequality in mind, please share it for tailored solutions.


What are 3 solutions for inequality for y9?

Three solutions for inequality in Year 9 math include: Graphing: Plotting the inequality on a graph helps visualize the solution set, showing all the points that satisfy the inequality. Substitution: Testing specific values in the inequality can help determine if they satisfy the condition, providing a practical way to find solutions. Algebraic Manipulation: Rearranging the inequality by isolating the variable can simplify the problem and lead directly to the solution set.


Find all integer values of x that make the equation or inequality true x2 equals 9?

that would be limited to 3 and -3 for values of x


What is the least possible integer solution of the inequality 4.103x19.868?

To find the least possible integer solution of the inequality (4.10 < 3x < 19.86), we first solve for (x) by dividing the entire inequality by 3. This gives us (1.3667 < x < 6.62). The least integer greater than (1.3667) is (2). Therefore, the least possible integer solution is (2).


What does solution of an inequality mean in math?

In mathematics, the solution of an inequality refers to the set of values that satisfy the inequality condition. For example, in the inequality (x > 3), any number greater than 3 is considered a solution. These solutions can often be represented on a number line or in interval notation, illustrating all possible values that fulfill the inequality. Essentially, it identifies the range of values for which the inequality holds true.


Does an equation with an integer coefficient always have an integer solution?

No, an equation with integer coefficients does not always have an integer solution. For example, the equation (2x + 3 = 5) has the integer solution (x = 1), but the equation (x^2 + 1 = 0) has no real solutions, let alone integer ones. The existence of integer solutions depends on the specific form and constraints of the equation.


Will an equation with an integer coefficient always have an integer solution?

No, an equation with integer coefficients does not always have an integer solution. For example, the equation (x + 1 = 2) has an integer solution, (x = 1), but the equation (2x + 3 = 1) has no integer solution since (x = -1) is not an integer. Solutions depend on the specific equation and its constraints, and rational or real solutions may exist instead.


How can you use a number line to represent solutions of an inequality?

A number line can visually represent the solutions of an inequality by marking the relevant points and shading the appropriate region. For example, if the inequality is ( x > 3 ), you would place an open circle at 3 (indicating that 3 is not included) and shade to the right to show all numbers greater than 3. Conversely, for ( x \leq 2 ), you would place a closed circle at 2 and shade to the left to indicate all numbers less than or equal to 2. This method provides a clear visual representation of the solution set.


How is solving an inequality different from solving an equation?

In solving an inequality you generally use the same methods as for solving an equation. The main difference is that when you multiply or divide each side by a negative, you have to switch the direction of the inequality sign. The solution to an equation is often a single value, but the solution to an inequality is usually an infinite set of numbers, such as x>3.