Chat with our AI personalities
3x4 plus 5x3 plus x2 - 5 divided by x 2 =[(3x4) + (5x3) + (x2 - 5)]/x2 =(12 + 15 + x2 -5)/x2 =(27 - 5 + x2)/x2 =(22 + x2)/x2
Hmm - you need to phrase your question a little better. Which of these are you looking for? x2 - 3x + 2x - 2 = x2 - x - 2 = (x - 2)(x + 1) x2 - (3x + 2)(x - 2) = x2 - 3x2 + 6x - 2x + 4 = -2x2 + 4x + 4 = -2(x2 - 2x - 2) x2 - 3x + 2(x - 2) = x2 + x - 4
Let P(x1, y1), Q(x2, y2), and M(x3, y3).If M is the midpoint of PQ, then,(x3, y3) = [(x1 + x2)/2, (y1 + y2)/2]We need to verify that,√[[(x1 + x2)/2 - x1]^2 + [(y1 + y2)/2 - y1]^2] = √[[x2 - (x1 + x2)/2]^2 + [y2 - (y1 + y2)/2]^2]]Let's work separately in both sides. Left side:√[[(x1 + x2)/2 - x1]^2 + [(y1 + y2)/2 - y1]^2]= √[[(x1/2 + x2/2)]^2 - (2)(x1)[(x1/2 + x2/2)) + x1^2] + [(y1/2 + y2/2)]^2 - (2)(y1)[(y1/2 + y2/2)] + y1^2]]= √[[(x1)^2]/4 + [(x1)(x2)]/2 + [(x2)^2]/4 - (x1)^2 - (x1)(x2) + (x1)^2 +[(y1)^2]/4 + [(y1)(y2)]/2 + [(y2)^2]/4 - (y1)^2 - (y1)(y2) + (y1)^2]]= √[[(x1)^2]/4 - [(x1)(x2)]/2 + [(x2)^2]/4 + [(y1)^2]/4 - [(y1)(y2)]/2 + [(y2)^2]/4]]Right side:√[[x2 - (x1 + x2)/2]^2 + [y2 - (y1 + y2)/2]^2]]= √[[(x2)^2 - (2)(x2)[(x1/2 + x2/2)] + [(x1/2 + x2/2)]^2 + [(y2)^2 - (2)(y2)[(y1/2 + y2/2)] + [(y1/2 + y2/2)]^2]]= √[[(x2)^2 - (x1)(x2) - (x2)^2 + [(x1)^2]/4 + [(x1)(x2)]/2 + [(x2)^2]/4 + (y2)^2 - (y1)[(y2) - (y2)^2 + [(y1)^2]/4) + [(y1)(y2)]/2 + [(y2)^2]/4]]= √[[(x1)^2]/4 - [(x1)(x2)]/2 + [(x2)^2]/4 + [(y1)^2]/4 - [(y1)(y2)]/2 + [(y2)^2]/4]]Since the left and right sides are equals, the identity is true. Thus, the length of PM equals the length of MQ. As the result, M is the midpoint of PQ
If "X2-2" refers to X * 2 - 2, the answer is X = 1; If "X2-2" refers to "X squared" - 2, the answer is X = square root of 2 (√2)
2x2 = x2 - 2 Subtract x2 from both sides: x2 = -2 Take square roots: x = + or - i*sqrt(2) where i is the imaginary sqrt of -1.