The integral of x^5 is (1/6)x^6 + C, where C is the constant of integration.
c = 5so 3 x c = 1515-6 = 9
int[6/cuberoot(X)] = int[6/X1/3] = int[6*X-1/3] = 1/(2/3)*6*X2/3 + c = 9X2/3 + c
Oh, dude, 9999999 in Roman numerals is like, "I, I, I, M, X, C, M, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C, I, X, C,
Circumference is equal to Pi times the Diameter C= (pi) X D C= 3.14 X 6 C= 18.85
The integral of x^5 is (1/6)x^6 + C, where C is the constant of integration.
6 C 2 = 6 x 5 / 2x 1 = 15
x=-6, x=1
c = 5so 3 x c = 1515-6 = 9
int[6/cuberoot(X)] = int[6/X1/3] = int[6*X-1/3] = 1/(2/3)*6*X2/3 + c = 9X2/3 + c
Rewrite it in the form y = mx + c and then the y-intercept is c.So x + y = 6 => y = -x + 6 Therefore [m = -1] and c = 6 so the y-intercept is 6.
A cubic with roots a, b, c has form: f(x) = (x - a)(x - b)(x - c) Thus the cubic with roots 3, -6 and 0 is given by: f(x) = (x - 3)(x - -6)(x - 0) → f(x) = (x - 3)(x + 6)x → f(x) = (x² + 3x - 18)x → f(x) = x³ + 3x² - 18x
x^2 + 4x - 12 factors to (x + 6)(x - 2) The correct answers are b and c
if ( x % 6 == 0 ){ printf( "%d is divisible by 6", x ); } else { printf( "%d is not divisible by 6", x ); }
Circumference is equal to Pi times the Diameter C= (pi) X D C= 3.14 X 6 C= 18.85
6
You can use the distributive property of multiplication to find the product. (a) 5 x 6 = 30 (b) 6 x 6 = (5 + 1) x 6 (c) 6 x 6 = 5 x 6 + 1 x 6 by the distributive property (d) 6 x 6 = 30 + 1 x 6 by substituting equation (a) (e) 6 x 6 = 30 + 6 by the identity property of multiplication (f) 6 x 6 = 36